Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optical Data Processing and Storage

Editor-in-Chief: Simoni, Francesco

Open Access
Online
ISSN
2084-8862
See all formats and pricing
More options …

Photovoltaic light valving induced in a vertically aligned nematic liquid crystal on a x-cut Fe:LiNbO3substrate

Alexander Lorenz
  • Corresponding author
  • Department of Chemistry, Paderborn University, Warburger, Paderborn, Germany
  • Institute of Chemistry, University of Kassel, Kassel, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lin Jiao / Dean R. Evans
  • Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-10 | DOI: https://doi.org/10.1515/odps-2018-0002

Abstract

Photovoltaic fields induced in x-cut Fe-doped lithium niobate (Fe:LiNbO3)were used to achieve optically induced defect formation and light valving in a vertically aligned nematic liquid crystal. Initially, the optical axis of the LC was vertically aligned (along the surface-normal of the planar, photovoltaic substrates) throughout the whole sample. Samples were exposed with a focused continuous wave laser beam and investigated via microscopic imaging in-between crossed polarizers. The optical axis of the planar, x-cut Fe:LiNbO3 substrates was in the substrate plane and oriented parallel to one of the polarizers, which resulted in an initially dark state. Optically induced surface fields (with high in-plane components) generated within the substrates led to director reorientations and defect formation. Accordingly, the samples were locally switched into a transmissive state. The area affected by exposure was larger (300 μm) than the FWHM of the Gaussian exposure beam (14 μm). Switching from dark to bright states (light valving) could be achieved in the investigated samples much more eficiently than in previously investigated samples with z-cut Fe:LiNbO3-substrates. Realignments of the LC director were induced at lower optical power density (140 mW/cm2) than would be required to excite the intrinsically present nonlinear optical responses in a nematic LC such as the light induced Fredericks transition.

Keywords: opto-optic responses; nonlinear optical responses; soft matter; optical modulators

References

  • Arregui, C., Ramiro, J. B., Alcazar, A., Mendez, A., Munoz-Martinez, J. F., & Carrascosa, M. (2015). Comparative theoretical analysis between parallel and perpendicular geometries for 2D particle patterning in photovoltaic ferroelectric substrates. Journal of the European Optical Society: Rapid Publications, 10, 15026. https://doi.org/10.2971/jeos.2015.15026Google Scholar

  • Arregui, Cándido, Ramiro, J. B., Alcázar, Á., Méndez, Á., Burgos, H., García-Cabañes, Á., & Carrascosa, M. (2014). Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment. Optics Express, 22(23), 29099. https://doi.org/10.1364/OE.22.029099CrossrefGoogle Scholar

  • Carns, J. L., Cook, G., Saleh, M. A., Serak, S. V., Tabiryan, N. V., Basun, S. A., & Evans, D. R. (2006). Photovoltaic Field-Induced Self- Phase Modulation of Light in Liquid Crystal Cells. Molecular Crystals and Liquid Crystals, 453(1), 83-92. https://doi.org/10.1080/15421400600651757CrossrefGoogle Scholar

  • Carns, Jennifer L., Cook, G., Saleh, M. A., Serak, S. V., Tabiryan, N. V., & Evans, D. R. (2006). Self-activated liquid-crystal cells with photovoltaic substrates. Optics Letters, 31(7), 993. https://doi.org/10.1364/OL.31.000993CrossrefGoogle Scholar

  • Carrascosa, M., García-Cabañes, A., Jubera, M., Ramiro, J. B., & Agulló-López, F. (2015). LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects. Applied Physics Reviews, 2(4), 040605. https://doi.org/10.1063/1.4929374Google Scholar

  • Esseling, M., Zaltron, A., Argiolas, N., Nava, G., Imbrock, J., Cristiani, I., ... Denz, C. (2013). Highly reduced iron-doped lithium niobate for optoelectronic tweezers. Applied Physics B, 113(2), 191-197. https://doi.org/10.1007/s00340-013-5456-8CrossrefGoogle Scholar

  • Fan, B., Li, F., Chen, L., Shi, L., Yan, W., Zhang, Y., ... Chen, H. (2017). PhotovoltaicManipulation ofWater Microdroplets on a Hydrophobic LiNbO 3 Substrate. Physical Review Applied, 7(6), 064010. https://doi.org/10.1103/PhysRevApplied.7.064010Google Scholar

  • García-Cabañes, A, Blázquez-Castro, A., Arizmendi, L., Agulló-López, F. & Carrascosa, M. (2018). Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on LithiumNiobate. Crystals, 8(2), 65. https://doi.org/10.3390/cryst8020065CrossrefGoogle Scholar

  • Gazzetto, M., Nava, G., Zaltron, A., Cristiani, I., Sada, C., & Minzioni, P. (2016). Numerical and Experimental Study of Optoelectronic Trapping on Iron-Doped Lithium Niobate Substrate. Crystals, 6(10), 123. https://doi.org/10.3390/cryst6100123CrossrefGoogle Scholar

  • Habibpourmoghadam, A., Jiao, L., Reshetnyak, V., Evans, D. R., & Lorenz, A. (2017). Opticalmanipulation and defect creation in a liquid crystal on a photoresponsive surface. Physical ReviewE, 96(2), 022701. https://doi.org/10.1103/PhysRevE.96.022701CrossrefGoogle Scholar

  • Habibpourmoghadam, A., Lucchetti, L., Evans, D. R., Reshetnyak, V. Y., Omairat, F., Schafforz, S. L., & Lorenz, A. (2017). Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface. Optics Express, 25(21), 26148. https://doi.org/10.1364/OE.25.026148CrossrefGoogle Scholar

  • Lucchetti, L., Kushnir, K., Ciciulla, F., Zaltron, A., Bettella, G., Pozza, G., ... Simoni, F. (2016). All-optical phase shifterwith photovoltaic liquid crystal cell. In I. C. Khoo (Ed.) (p. 99400G). https://doi.org/10.1117/12.2235580Google Scholar

  • Lucchetti, L., Kushnir, K., Reshetnyak, V., Ciciulla, F., Zaltron, A., Sada, C., & Simoni, F. (2017). Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation. OpticalMaterials, 73, 64-69. https://doi.org/10.1016/j.optmat.2017.08.004CrossrefGoogle Scholar

  • Lucchetti, L., Kushnir, K., Zaltron, A., & Simoni, F. (2016). Liquid crystal cells based on photovoltaic substrates. Journal of the European Optical Society: Rapid Publications, 11, 16007. https://doi.org/10.2971/jeos.2016.16007CrossrefGoogle Scholar

  • Tabiryan, N. V., Zel’dovich, B. Y., Sukhov, A. V. (1986). The orientational optical nonlinearity of liquid crystals. Molecular Crystals and Liquid Crystals, 136, 1-139. https://doi.org/10.1080/00268948608074569CrossrefGoogle Scholar

  • Villarroel, J., Burgos, H., García-Cabañes, Á., Carrascosa, M., Blázquez-Castro, A., & Agulló-López, F. (2011). Photovoltaic versus optical tweezers. Optics Express, 19(24), 24320. https://doi.org/10.1364/OE.19.024320CrossrefGoogle Scholar

  • Volk, T. (2010). Lithium niobate: defects, photorefraction and ferroelectric switching. Springer. ISBN-13: 978-3540707653.Google Scholar

About the article

Received: 2018-06-05

Accepted: 2018-09-22

Published Online: 2018-11-10

Published in Print: 2018-11-01


Citation Information: Optical Data Processing and Storage, Volume 4, Issue 1, Pages 8–13, ISSN (Online) 2084-8862, DOI: https://doi.org/10.1515/odps-2018-0002.

Export Citation

© by Alexander Lorenz, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in