Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 14, Issue 1


Uncooled infrared photodetectors in Poland

J. Piotrowski / A. Piotrowski
Published Online: 2006-03-01 | DOI: https://doi.org/10.2478/s11772-006-0006-0


The history and present status of the middle and long wavelength Hg1-xCdxTe infrared detectors in Poland are reviewed. Research and development efforts in Poland were concentrated mostly on uncooled market niche.

Technology of the infrared photodetectors has been developed by several research groups. The devices are based on mercury-based variable band gap semiconductor alloys. Modified isothermal vapour phase epitaxy (ISOVPE) has been used for many years for research and commercial fabrication of photoconductive, photoelectromagnetic and other devices. Bulk growth and liquid phase epitaxy was also used. At present, the fabrication of IR devices relies on low temperature epitaxial technique, namely metalorganic vapour phase deposition (MOCVD), frequently in combination with the ISOVPE.

Photoconductive and photoelectromagnetic detectors are still in production. The devices are gradually replaced with photovoltaic devices which offer inherent advantages of no electric or magnetic bias, no heat load and no flicker noise. Potentially, the PV devices could offer high performance and very fast response. At present, the uncooled long wavelength devices of conventional design suffer from two issues; namely low quantum efficiency and very low junction resistance. It makes them useless for practical applications. The problems have been solved with advanced 3D band gap engineered architecture, multiple cell heterojunction devices connected in series, monolithic integration of the detectors with microoptics and other improvements. Present fabrication program includes devices which are optimized for operation at any wavelength within a wide spectral range 1–15 μm and 200–300 K temperature range. Special solutions have been applied to improve speed of response. Some devices show picoseconds range response time. The devices have found numerous civilian and military applications.

Keywords: infrared photodetectors; uncooled detectors; photovoltaic detectors; heterostructures

  • [1] W.D. Lawson, S. Nielsen, E.H. Putley, and A.S. Young, “Preparation and properties of HgTe-CdTe”, J. Phys. Chem. Solids 9, 325–329 (1959). http://dx.doi.org/10.1016/0022-3697(59)90110-6CrossrefGoogle Scholar

  • [2] R.R. Galazka and W. Giriat, “Electrical properties of the CdTe-HgTe system”, Bull. Acad. Polon. Sci. 9, 281 (1961). Google Scholar

  • [3] R. Gałazka, “Preparation, doping and electrical properties of Hg0.9Cd0.1Te”, Acta Phys. Polon. 24, 791–800 (1963). Google Scholar

  • [4] W. Giriat, Z. Dziuba, R.R. Galazka, L. Sosnowski, and T. Zakrzewski, “Electrical properties of the semiconducting system CdxHg1-xTe”, Proc. 7 th ICPS, Paris 1964, Dunod Editeur, 1251 (1964). Google Scholar

  • [5] W. Giriat and M. Grynberg, “Photoelectromagnetic infrared detector”, Przeglad Elektroniki 4, 216–221 (1963). (in Polish). Google Scholar

  • [6] J. Piotrowski and A. Rogalski, Semiconductor Infrared Detectors, WNT, Warsaw 1984. (in Polish). Google Scholar

  • [7] G. Cohen-Solal and Y. Marfaing, “Transport of photo-carriers in CdxHg1-xTe graded-gap structures”, Solid State Electronics 11, 1131–1147 (1968). http://dx.doi.org/10.1016/0038-1101(68)90005-1CrossrefGoogle Scholar

  • [8] J. Piotrowski, “A new method of obtaining CdxHg1-xTe thin films”, Electron Technology 5, 87–89 (1972). Google Scholar

  • [9] J. Piotrowski, “Electrical and photoelectric properties of Hg1-xCdxTe films”, Theses, MUT, Warsaw, 1973. (in Polish). Google Scholar

  • [10] E. Igras, R. Jezykowski, T. Persak, J. Piotrowski, and Z. Nowak, “Epitaxial CdxHg1-xTe layers as infrared detectors”, Proc 6 th Int. Symp. on Photon Detectors 221, Budapest, 236 (1974). Google Scholar

  • [11] J. Piotrowski, W. Galus, and M. Grudzien, “Near roomtemperature IR photo-detectors”, Infrared Phys. 31, 1–48 (1991). http://dx.doi.org/10.1016/0020-0891(91)90037-GCrossrefGoogle Scholar

  • [12] Z. Nowak, J. Piotrowski, and J. Rutkowski, “Growth of HgZnTe by cast recrystallization”, J. Crystal Growth 89, 237–241 (1988). http://dx.doi.org/10.1016/0022-0248(88)90407-1CrossrefGoogle Scholar

  • [13] K. Adamiec, A. Maciak, Z. Nowak, and J. Piotrowski, “ZnHgTe as a material for ambient temperature 10.6 μm photodetectors”, Appl. Phys. Lett. 54, 143–144 (1989). http://dx.doi.org/10.1063/1.101210CrossrefGoogle Scholar

  • [14] J. Piotrowski, K. Adamiec, and A. Maciak, “High-temperature 10.6 μm HgZnTe photodetectors”, Infrared Phys. 2/4, 267–270 (1989). http://dx.doi.org/10.1016/0020-0891(89)90061-4CrossrefGoogle Scholar

  • [15] P. Brogowski, H. Mucha, and J Piotrowski, “Modification of mercury cadmium telluride, mercury manganese tellurium, and mercury zinc telluride by ion etching”, Phys. Stat. Sol. 114(a), K37 (1989). Google Scholar

  • [16] P. Brogowski and J. Piotrowski, “The p-to-n conversion of HgCdTe, HgZnTe, and HgMnTe by anodic oxidation and subsequent heat treatment”, Semicond. Sci. 5, 530–532 (1990). http://dx.doi.org/10.1088/0268-1242/5/6/011CrossrefGoogle Scholar

  • [17] E. Igras and J. Piotrowski, “A new (Cd,Hg)Te photodiode type with protected junction surface”, Optica Applicata 6, 99–106 (1976). Google Scholar

  • [18] A. Rogalski, J. Piotrowski, and J. Gronkowski, “A modified hot wall epitaxy technique for the growth of CdTe and Hg1-xCdxTe epitaxial layers”, Thin Solid Films 191, 239–245 (1990). http://dx.doi.org/10.1016/0040-6090(90)90376-OCrossrefGoogle Scholar

  • [19] L. Kubiak, P. Madejczyk, J. Wenus, W. Gawron, K. Jóźwikowski, J. Rutkowski, and A. Rogalski, “Status of HgCdTe photodiodes at the Military University of Technology”, Opto-Electron. Rev. 11, 211–226 (2003). Google Scholar

  • [20] J. Piotrowski, A. Jóźwikowska, K. Jóźwikowski, and R. Ciupa, “Numerical analysis of longwavelength extracted photodiodes”, Infrared Phys. 34, 565–572 (1993). http://dx.doi.org/10.1016/0020-0891(93)90112-KCrossrefGoogle Scholar

  • [21] A. Rogalski and J. Piotrowski, “Intrinsic infrared photodetectors”, Prog. Quant. Electr. 12, 87–289 (1988). http://dx.doi.org/10.1016/0079-6727(88)90001-8CrossrefGoogle Scholar

  • [22] Infrared Photon Detectors, edited by A. Rogalski, SPIE Optical Engineering Press, Bellingham, Washington USA, 1995. Google Scholar

  • [23] A. Rogalski, Infrared Detectors, Gordon and Breach Science Publishers, Amsterdam, 2000. Google Scholar

  • [24] A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-gap Semiconductor Photodiodes, SPIE Press, Bellingham, 2000. Google Scholar

  • [25] A. Rogalski, “Hg-based alternatives to MCT”, in Infrared Detectors and Emitters: Materials and Devices, pp. 377–400, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2001. Google Scholar

  • [26] A. Rogalski, “Infrared detectors: status and trends”, Progress in Quantum Electronics 27, 59–210 (2003). http://dx.doi.org/10.1016/S0079-6727(02)00024-1CrossrefGoogle Scholar

  • [27] A. Rogalski, “Photon detectors”, in Encyclopedia of Optical Engineering, pp. 1985–2035, edited by R. Driggers, Marcel Dekker, Inc., New York, 2003. Google Scholar

  • [28] A. Rogalski, Infrared Detectors: Developments, SPIE Milestone Series, SPIE Optical Engineering Press, Bellingham, Washington USA, 2004. Google Scholar

  • [29] A. Rogalski, “HgCdTe infrared detector material: history, status and outlook”, Rep. Prog. Phys. 68, 2267–2336 (2005). http://dx.doi.org/10.1088/0034-4885/68/10/R01CrossrefGoogle Scholar

  • [30] P. Becla, E. Dudziak, and J.M. Pawlikowski, “Spectral sensitivity of the photovoltaic effect in CdxHg1-xTe p-n junctions”, Optica Applicata 4, 3–5 (1974). Google Scholar

  • [31] J.M. Pawlikowski and P. Becla, “Some properties of photo-voltaic Hg1-xCdxTe detectors for infrared radiation”, Infrared Phys. 15, 331–337 (1975). http://dx.doi.org/10.1016/0020-0891(75)90051-2CrossrefGoogle Scholar

  • [32] P. Becla and J.M. Pawlikowski, “Epitaxial Hg1-xCdxTe photovoltaic detectors”, Infrared Phys. 16, 457–464 (1975). http://dx.doi.org/10.1016/0020-0891(76)90087-7CrossrefGoogle Scholar

  • [33] J.M. Pawlikowski, “Photoconductivity of graded-gap Hg1-xCdxTe”, Infrared Physics 19, 179–184 (1978). http://dx.doi.org/10.1016/0020-0891(79)90024-1CrossrefGoogle Scholar

  • [34] J.M. Pawlikowski, “Application of epitaxial graded-gap semiconductor layers broad range photodetectors”, Thin Solid Film 50, 269–272 (1978). http://dx.doi.org/10.1016/0040-6090(78)90112-8CrossrefGoogle Scholar

  • [35] P. Becla and E. Placzek-Popko, “Electrical properties of infrared photovoltaic Hg1-xCdxTe detectors”, Infrared Phys. 21, 323–332 (1981). http://dx.doi.org/10.1016/0020-0891(81)90038-5CrossrefGoogle Scholar

  • [36] M. Nowak, “The photomagnetoelectric effect and photo-conductivity for non-normal incidence of radiation”, Phys. Stat. Sol. (a)80, 691–701 (1983). CrossrefGoogle Scholar

  • [37] J. Piotrowski, Z. Djurić, W. Galus, V. Jović, M. Grudzień, Z. Djinović, and Z. Nowak, “Composition and thickness control of CdxHg1-xTe layers grown by open tube isothermal vapour phase epitaxy”, J. Crystal Growth 83, 122–126 (1987). http://dx.doi.org/10.1016/0022-0248(87)90512-4CrossrefGoogle Scholar

  • [38] J. Piotrowski, Z. Nowak, M. Grudzień, W. Galus, K. Adamiec, Z. Djurić, V. Jović, and Z. Djinović, “High capability, quasi closed growth system for isothermal vapour phase epitaxy of (Hg,Cd)Te”, Thin Solid Film 161, 157–169 (1988). http://dx.doi.org/10.1016/0040-6090(88)90247-7CrossrefGoogle Scholar

  • [39] Z. Djuric and J. Piotrowski, “Generalized model of the isothermal vapour phase epitaxy of HgCdTe”, Appl. Phys. Lett. 51, 1699–1701 (1987). http://dx.doi.org/10.1063/1.98548CrossrefGoogle Scholar

  • [40] J. Piotrowski and M. Razeghi, “Improved performance of IR photodetectors with 3D gap engineering”, Proc. SPIE 2397, 180–192 (1995). Google Scholar

  • [41] K. Adamiec, M. Grudzień, Z. Nowak, J. Pawluczyk, J. Piotrowski, J. Antoszewski, J. Dell, C. Musca, and L. Faraone, “Isothermal vapour phase epitaxy as a versatile technology for infrared photodetectors”, Proc. SPIE 2999, 34–43 (1997). Google Scholar

  • [42] A. Piotrowski, P. Madejczyk, W. Gawron, K. Klos, M. Romanis, M. Grudzien, A. Rogalski, and J. Piotrowski, “MOCVD growth of Hg1-xCdxTe heterostructures for uncooled infrared photodetectors”, Opto-Electron. Rev. 12, 453–458 (2004). Google Scholar

  • [43] A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, M. Grudzień, J. Piotrowski, and A. Rogalski, “Recent progress in MOCVD growth of Hg1-xCdxTe heterostructures for uncooled infrared photodetectors”, Proc. SPIE 5957, 273–284 (2005). Google Scholar

  • [44] M. Grudzieén and J. Piotrowski, “Monolithic optically immersed HgCdTe IR detectors”, Infrared Phys. 29, 251–253 (1989). http://dx.doi.org/10.1016/0020-0891(89)90058-4CrossrefGoogle Scholar

  • [45] J. Piotrowski, W. Gawron, and Z. Djuric, “New generation of near-room-temperature photodetectors”, Optical Engineering 33, 1413–1421 (1994). http://dx.doi.org/10.1117/12.165795CrossrefGoogle Scholar

  • [46] J. Piotrowski, “Hg1-xCdxTe infrared photodetectors”, in Infrared Photodetectors, pp. 391–494, SPIE, Bellingham, 1995. Google Scholar

  • [47] J. Piotrowski and W. Gawron, “Ultimate performance of infrared photodetectors and figure of merit of detector mterial”, Infrared Physics and Technology 38, 63–68 (1997). http://dx.doi.org/10.1016/S1350-4495(96)00030-8CrossrefGoogle Scholar

  • [48] J. Piotrowski, M. Grudzień, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg1-xCdxTe LWIR detectors”, Proc. SPIE 4130, 175–184 (2000). Google Scholar

  • [49] J. Piotrowski, “Uncooled operation of IR photodetectors”, Opto-Electron. Rev. 12, 11–122 (2004). Google Scholar

  • [50] J. Piotrowski, Z. Nowak, J. Antoszewski, C. Musca, J. Dell, and L. Faraone, “A novel multi-heterojunction HgCdTe long-wavelength infrared photovoltaic detector for operation under reduced cooling conditions”, Semicond. Sci. Technol. 13, 1209–1214 (1998). http://dx.doi.org/10.1088/0268-1242/13/10/025CrossrefGoogle Scholar

  • [51] J. Piotrowski, P. Brzozowski, and K. Jóźwikowski, “Stacked multijunction photodetectors of long wavelength radiation”, J. Electron. Mat. 32, 672–676 (2003). CrossrefGoogle Scholar

  • [52] A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, M. Grudzień, J. Piotrowski, and A. Rogalski, “Growth of MOCVD HgCdTe heterostructures for uncooled infrared detectors”, Bull. Pol. Ac.: Tech. 53, 139–149 (2005). Google Scholar

  • [53] J. Piotrowski, “Uncooled IR detectors maintain sensitivity”, Photonics Spectra 5, 80–86 (2004). Google Scholar

  • [54] www.vigo.com.pl Google Scholar

  • [55] Z. Djuric and J. Piotrowski, “Infrared photodetector with electromagnetic carrier depletion”, Opt. Eng. 39, 1955–1960 (1992). http://dx.doi.org/10.1117/12.59973CrossrefGoogle Scholar

  • [56] http://www.pcosa.com.pl/wersja_angielska/laser_warn_sys.htm Google Scholar

About the article

Published Online: 2006-03-01

Published in Print: 2006-03-01

Citation Information: Opto-Electronics Review, Volume 14, Issue 1, Pages 37–45, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-006-0006-0.

Export Citation

© 2006 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in