Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 14, Issue 1

Issues

Competitive technologies of third generation infrared photon detectors

A. Rogalski
Published Online: 2006-03-01 | DOI: https://doi.org/10.2478/s11772-006-0012-2

Abstract

Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolour functionality and other on-chip functions.

In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well IR photoconductors (QWIPs) are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. However, the metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm.

Keywords: HgCdTe detectors; QWIPs; type II superlattices; third generation detectors

  • [1] P.R. Norton, “Infrared detectors in the next millennium”, Proc. SPIE 3698, 652–665 (1999). Google Scholar

  • [2] P. Norton, J. Campbell, S. Horn, and D. Reago, “Third-generation infrared imagers”, Proc. SPIE 4130, 226–236 (2000). Google Scholar

  • [3] P.R. Norton, “Third-generation sensors for night vision”, Opto-Electron. Rev. 14, 1–10 (2006). CrossrefGoogle Scholar

  • [4] A. Rogalski, “Optical detectors for focal plane arrays”, Opto-Electron. Rev. 12, 221–245 (2004). Google Scholar

  • [5] P. Norton, “HgCdTe infrared detectors”, Opto-Electron. Rev. 10, 159–174 (2002). Google Scholar

  • [6] A. Rogalski, “HgCdTe infrared detector material: History, status, and outlook”, Rep. Prog. Phys. 68, 2267–2336 (2005). http://dx.doi.org/10.1088/0034-4885/68/10/R01CrossrefGoogle Scholar

  • [7] M.Z. Tidrow, W.A. Beck, W.W. Clark, H.K. Pollehn, J.W. Little, N.K. Dhar, P.R. Leavitt, S.W. Kennerly, D.W. Beekman, A.C. Goldberg, and W.R. Dyer, “Device physics and focal plane applications of QWIP and MCT”, Opto-Electron. Rev. 7, 283–296 (1999). Google Scholar

  • [8] S.D. Gunapala and S.V. Bandara, “GaAs/AlGaAs based quantum well infrared photodetector focal plane arrays”, in Handbook of Infrared Detection Technologies, pp. 83–119, edited by M. Henini and M. Razeghi, Elsevier, Oxford, 2002. Google Scholar

  • [9] A. Rogalski, “Quantum well photoconductors in infrared detectors technology”, J. Appl. Phys. 93, 4355–4391 (2003). http://dx.doi.org/10.1063/1.1558224CrossrefGoogle Scholar

  • [10] A. Rogalski, “Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arrays”, Infrared Phys. Technol. 40, 279–294 (1999). http://dx.doi.org/10.1016/S1350-4495(99)00003-1CrossrefGoogle Scholar

  • [11] L. Bürkle and F. Fuchs, “InAs/(GaIn)Sb superlattices: a promising material system for infrared detection”, in Handbook of Infrared Detection and Technologies, pp. 159–189, edited by M. Henini and M. Razeghi, Elsevier, Oxford, 2002. Google Scholar

  • [12] W. Cabanski, K. Eberhardt, W. Rode, J. Wendler, J. Ziegler, J. Fleißner, F. Fuchs, R. Rehm, J. Schmitz, H. Schneider, and M. Walther, “3rd gen focal plane array IR detection modules and applications”, Proc. SPIE 5406, 184–192 (2005). Google Scholar

  • [13] R. Rehm, M. Walther, J. Schmitz, J. Fleißner, F. Fuchs, J. Ziegler, and W. Cabanski, “InAs/GaSb superlattice focal plane arrays for high-resolution thermal imaging”, Opto-Electron. Rev. 14, 19–24 (2006). Google Scholar

  • [14] A. Rogalski and P. Martyniuk, “InAs/GaInSb superlattices as a promising material system for third generation infrared detectors”, Infrared Phys. Technol. 48, 39–52 (2006). http://dx.doi.org/10.1016/j.infrared.2005.01.003CrossrefGoogle Scholar

  • [15] A.W. Hoffman, P.L. Love, and J.P. Rosbeck, “Mega-pixel detector arrays: Visible to 28 μm”, Proc. SPIE 5167, 194–203 (2004). Google Scholar

  • [16] A. Hoffman, “Semiconductor processing technology improves resolution of infrared arrays”, Laser Focus World 42, 81–84 (2006). Google Scholar

  • [17] D. Reago, S. Horn, J. Campbell, and R. Vollmerhausen, “Third generation imaging sensor system concepts”, Proc. SPIE, 3701, 108–117 (1999). Google Scholar

  • [18] L.J. Kozlowski and W.F. Kosonocky, “Infrared detector arrays”, in Handbook of Optics, Chap. 23, edited by M. Bass, E.W. Van Stryland, D.R. Williams, and W.L. Wolfe, McGraw-Hill, Inc. New York, 1995. Google Scholar

  • [19] S. Horn, P. Norton, K. Carson, R. Eden, and R. Clement, “Vertically-integrated sensor arrays — VISA”, Proc. SPIE 5406, 332–340 (2004). Google Scholar

  • [20] R. Balcerak and S. Horn, “Progress in the development of vertically-integrated sensor arrays”, Proc. SPIE 5783, 384–391 (2005). Google Scholar

  • [21] E.P.G. Smith, L.T. Pham, G.M. Venzor, E.M. Norton, M.D. Newton, P.M. Goetz, V.K. Randall, A.M. Gallagher, G.K. Pierce, E.A. Patten, R.A. Coussa, K. Kosai, W.A. Radford, L.M. Giegerich, J.M. Edwards, S.M. Johnson, S.T. Baur, J.A. Roth, B. Nosho, T.J. De Lyon, J.E. Jensen, and R.E. Longshore, “HgCdTe focal plane arrays for dual-colour mid-and long-wavelength infrared detection”, J. Electron. Mater. 33, 509–516 (2004). CrossrefGoogle Scholar

  • [22] W.A. Radford, E.A. Patten, D.F. King, G.K. Pierce, J. Vodicka, P. Goetz, G. Venzor, E.P. Smith, R. Graham, S.M. Johnson, J. Roth, B. Nosho, and J. Jensen, “Third generation FPA development status at Raytheon Vision Systems”, Proc. SPIE 5783, 331–339 (2005). Google Scholar

  • [23] A.C. Goldberger, S.W. Kennerly, J.W. Little, H.K. Pollehn, T.A. Shafer, C.L. Mears, H.F. Schaake, M. Winn, M. Taylor, and P.N. Uppal, “Comparison of HgCdTe and QWIP dual-band focal plane arrays”, Proc. SPIE 4369, 532–546 (2001). Google Scholar

  • [24] H. Schneider, M. Walther, J. Fleissner, R. Rehm, E. Diwo, K. Schwarz, P. Koidl, G. Weimann, J. Ziegler, R. Breiter, and W. Cabanski, “Low-noise QWIPs for FPA sensors with high thermal resolution”, Proc. SPIE 4130, 353–362 (2000). Google Scholar

  • [25] H. Schneider, P. Koidl, M. Walther, J. Fleissner, R. Rehm, E. Diwo, K. Schwarz, and G. Weimann, “Ten years of QWIP development at Fraunhofer”, Infrared Phys. Technol. 42, 283–289 (2001). http://dx.doi.org/10.1016/S1350-4495(01)00086-XCrossrefGoogle Scholar

  • [26] M. Jhabvala, K. Choi, A. Goldberg, A. La, and S. Gunapala, “Development of a 1k×1k GaAs QWIP far IR imaging array”, Proc. SPIE 5167, 175–185 (2004). Google Scholar

  • [27] S.D. Gunapala, S.V. Bandara, J.K. Liu, C.J. Hill, B. Rafol, J.M. Mumolo, J.T. Trinh, M.Z. Tidrow, and P.D. LeVan, “1024×1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications”, Semicond. Sci. Technol. 20, 473–480 (2005). http://dx.doi.org/10.1088/0268-1242/20/5/026CrossrefGoogle Scholar

  • [28] S.D. Gunapala, S.V. Bandara, J.K. Liu, C.J. Hill, B. Rafol, and J.M. Mumolo, “640×512 pixel long-wavelength infrared narrowband, multiband, and broadband QWIP focal plane arrays”, IEEE Trans. Electron Devices 50, 2353–2360 (2004). http://dx.doi.org/10.1109/TED.2003.818818CrossrefGoogle Scholar

  • [29] G.J. Brown, F. Szmulowicz, K. Mahalingam, S. Houston, Y. Wei, A. Gon, and M. Razeghi, “Recent advances in InAs/GaSb superlattices for very long wavelength infrared detection”, Proc. SPIE 4999, 457–466 (2003). Google Scholar

  • [30] D.L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors”, J. Appl. Phys. 62, 2545–2548 (1987). http://dx.doi.org/10.1063/1.339468CrossrefGoogle Scholar

  • [31] C. Mailhiot and D.L. Smith, “Long-wavelength infrared detectors based on strained InAs-GaInSb type-II superlattices”, J. Vac. Sci. Technol. A7, 445–449 (1989). Google Scholar

  • [32] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Monographies de Physiques Series, Halsted Press, New York, 1988. Google Scholar

  • [33] J.P. Omaggio, J.R. Meyer, R.J. Wagner, C.A. Hoffman, M.J. Yang, D.H. Chow, and R.H. Miles, “Determination of band gap and effective masses in InAs/Ga1−xInxSb superlattices”, Appl. Phys. Lett. 61, 207–209 (1992). http://dx.doi.org/10.1063/1.108219Google Scholar

  • [34] C.A. Hoffman, J.R. Meyer, E.R. Youngdale, F.J. Bartoli, R.H. Miles, and L.R. Ram-Mohan, “Electron transport in InAs/Ga1−xInxSb superlattices”, Solid State Electron. 37, 1203–1206 (1994). http://dx.doi.org/10.1016/0038-1101(94)90389-1Google Scholar

  • [35] C.H. Grein, P.M. Young, and H. Ehrenreich, “Minority carrier lifetimes in ideal InGaSb/InAs superlattice”, Appl. Phys. Lett. 61, 2905–2907 (1992). http://dx.doi.org/10.1063/1.108480CrossrefGoogle Scholar

  • [36] C.H. Grein, P.M. Young, M.E. Flatté, and H. Ehrenreich, “Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes”, J. Appl. Phys. 78, 7143–7152 (1995). http://dx.doi.org/10.1063/1.360422CrossrefGoogle Scholar

  • [37] E.R. Youngdale, J.R. Meyer, C.A. Hoffman, F.J. Bartoli, C.H. Grein, P.M. Young, H. Ehrenreich, R.H. Miles, and D.H. Chow, “Auger lifetime enhancement in InAs-Ga1−xInxSb superlattices”, Appl. Phys. Lett. 64, 3160–3162 (1994). http://dx.doi.org/10.1063/1.111325Google Scholar

  • [38] O.K. Yang, C. Pfahler, J. Schmitz, W. Pletschen, and F. Fuchs, “Trap centers and minority carrier lifetimes in InAs/GaInSb superlattice long wavelength photodetectors”, Proc. SPIE 4999, 448–456 (2003). Google Scholar

  • [39] H. Ehrenreich, C.H. Grein, R.H. Miles and M.E. Flatte, “Reply to ‘Comment on Temperature limits on infrared detectivities of InAs/InxGa1−xSb superlattices and bulk HgxCd1−xTe’”, [J. Appl. Phys. 80, 2542 (1996)]”, J. Appl. Phys. 80, 2545–2546 (1996). http://dx.doi.org/10.1063/1.363044CrossrefGoogle Scholar

  • [40] J. Piotrowski and A. Rogalski, “Comment on “Temperature limits on infrared detectivities of InAs/InxGa1−xSb superlattices and bulk HgxCd1−xTe,” [J. Appl. Phys. 74, 4774 (1993)]”, J. Appl. Phys. 80, 2542–2544 (1996). http://dx.doi.org/10.1063/1.363043CrossrefGoogle Scholar

  • [41] J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors”, Infrared Physics & Technol. 46, 115–131 (2004). http://dx.doi.org/10.1016/j.infrared.2004.03.016CrossrefGoogle Scholar

  • [42] J.L. Johnson, “The InAs/GaInSb strained layer superlattice as an infrared detector material: An Overview”, Proc. SPIE 3948, 118–132 (2000). Google Scholar

  • [43] G.J. Brown, “Type-II InAs/GaInSb superlattices for infrared detectors: an overview”, Proc. SPIE 5783, 65–77 (2005). Google Scholar

  • [44] R. Rehm, M. Walther, J. Schmitz, J. Fleißner, F. Fuchs, W. Cabanski, and J. Ziegler, “InAs/(GaIn)Sb short-period superlattices for focal plane arrays”, Proc. SPIE 5783, 123–130 (2005). Google Scholar

  • [45] E.H. Aifer, I. Vurgaftman, C.L. Canedy, J.G. Tischler, J.H. Warner, E.M. Jackson, and J.R. Meyer, “W-Structured type-II superlattices based long-wave infrared photodiodes with high dynamic impedance”, to be published. Google Scholar

  • [46] E.H. Aifer, J.G. Tischler, J.H. Warner, I. Vurgaftman, and J.R. Meyer, “Dual band LWIR/VLWIR type-II superlattice photodiodes”, Proc. SPIE 5783, 112–122 (2005). Google Scholar

  • [47] R. Rehm, M. Walther, H. Schneider, J. Fleißner, J. Schmitz, J. Ziegler, W. Cabanski, and R. Breiter, “Bispectral thermal imaging with quantum-well infrared photodetectors and InAs/GaSb type II superlattices”, Proc. SPIE 6206, paper 34. Google Scholar

About the article

Published Online: 2006-03-01

Published in Print: 2006-03-01


Citation Information: Opto-Electronics Review, Volume 14, Issue 1, Pages 84–98, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-006-0012-2.

Export Citation

© 2006 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in