Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
See all formats and pricing
In This Section
Volume 14, Issue 3 (Sep 2006)


Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes

K. Kim
  • School of Electrical Engineering and Computer Science, Kyungpook National University, 702-701, Daegu, Korea
  • Email:
/ Y. Cho
  • School of Electrical Engineering and Computer Science, Kyungpook National University, 702-701, Daegu, Korea
  • Email:
/ H. Tae
  • School of Electrical Engineering and Computer Science, Kyungpook National University, 702-701, Daegu, Korea
  • Email:
/ J. Lee
  • Department of Radio Science and Communication Engineering, Hongik University, 121-791, Seoul, Korea
  • Email:
Published Online: 2006-09-01 | DOI: https://doi.org/10.2478/s11772-006-0031-z


The light transmission through a dispersive plasmonic circular hole is numerically investigated with an emphasis on its subwavelength guidance. For a better understanding of the effect of the hole diameter on the guided dispersion characteristics, the guided modes, including both the surface plasmon polariton mode and the circular waveguide mode, are studied for several hole diameters, especially when the metal cladding has a plasmonic frequency dependency. A brief comparison is also made with the guided dispersion characteristics of a dispersive plasmonic gap [K.Y. Kim, et al., Opt. Express 14, 320–330 (2006)], which is a planar version of the present structure, and a circular waveguide with perfect electric conductor cladding. Finally, the modal behaviour of the first three TM-like principal modes with varied hole diameters is examined for the same operating mode.

Keywords: dispersion; dispersive plasmonic hole; subwavelength guidance; surface plasmon polariton; surface wave

  • [1] R.C. Dunn, “Near-field scanning optical microscopy”, Chem. Rev. 99, 2891–2927 (1999). http://dx.doi.org/10.1021/cr980130eCrossrefGoogle Scholar

  • [2] S. Kawata, “Near-field microscope probes utilizing surface plasmon polaritons”, in Near-Field Optics and Surface Plasmon Polaritons, pp. 15–27, edited by S. Kawata, Springer-Verlag, Berlin, 2001. Google Scholar

  • [3] H.A. Bethe, “Theory of diffraction by small holes”, Phys. Rev. 66, 163–182 (1944). http://dx.doi.org/10.1103/PhysRev.66.163CrossrefGoogle Scholar

  • [4] N.A. Janunts, K.S. Baghdasaryan, K.V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip”, Opt. Commun. 253, 118–124 (2005). http://dx.doi.org/10.1016/j.optcom.2005.04.076CrossrefGoogle Scholar

  • [5] L. Novotny, D.W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy”, Ultramicroscopy 61, 1–9 (1995). http://dx.doi.org/10.1016/0304-3991(95)00095-XCrossrefGoogle Scholar

  • [6] A. Lewis, E. Shambrot, A. Radko, K. Lieberman, S. Ezekiel, D. Veinger, and G. Yampolski, “Failure analysis of integrated circuits beyond the diffraction limit: Contact mode near-field scanning optical microscopy with integrated resistance, capacitance, and UV confocal imaging”, Proc. IEEE 88, 1471–1479 (2000). http://dx.doi.org/10.1109/5.883318CrossrefGoogle Scholar

  • [7] H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, and T.W. Ebbesen, “Beaming light from a subwavelength aperture”, Science 297, 820–822 (2002). http://dx.doi.org/10.1126/science.1071895CrossrefGoogle Scholar

  • [8] E. Popov, M. Nevière, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole”, Opt. Commun. 255, 338–348 (2005). http://dx.doi.org/10.1016/j.optcom.2005.06.010CrossrefGoogle Scholar

  • [9] E. Popov, N. Bonod, M. Nevičre, H. Rigneault, P.F. Lenne, and P. Chaumet, “Surface plasmon excitation on a single subwavelength hole in a metallic sheet”, Appl. Opt. 44, 2332–2337 (2005). http://dx.doi.org/10.1364/AO.44.002332CrossrefGoogle Scholar

  • [10] M.J. Lockyear, A.P. Hibbins, and J.R. Sambles, “Microwave transmission through a single subwavelength annular aperture in a metal plate”, Phys. Rev. Lett. 94, 193902 (2005). CrossrefGoogle Scholar

  • [11] A. Moreau, G. Granet, F.I. Baida, and D. Van Labeke, “Light transmission by subwavelength square coaxial aperture arrays in metallic films”, Opt. Express 11, 1131–1136 (2003). http://dx.doi.org/10.1364/OE.11.001131CrossrefGoogle Scholar

  • [12] Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen”, Phys. Rev. Lett. 86, 5601–5603 (2001). http://dx.doi.org/10.1103/PhysRevLett.86.5601CrossrefGoogle Scholar

  • [13] F. Yang and J.R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit”, Phys. Rev. Lett. 89, 063901 (2002). PubMedCrossrefGoogle Scholar

  • [14] D.M. Pozar, Microwave Engineering, John Wiley & Sons, Inc. New York, 1998. Google Scholar

  • [15] M. Schmeits, “Surface-plasmon coupling in cylindrical pores”, Phys. Rev. B39, 7567–7577 (1989). CrossrefGoogle Scholar

  • [16] U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core”, Phys. Rev. B64, 125420 (2001). Web of ScienceCrossrefGoogle Scholar

  • [17] G.A. Farias, E.F. Nobre, R. Moretzsohn, N.S. Almeida, and M.G. Cottam, “Polaritons in hollow cylinders in the presence of a dc magnetic field”, J. Opt. Soc. Am. A19, 2449–2455 (2002). CrossrefGoogle Scholar

  • [18] A.V. Klyuchnik, S.Y. Kurganov, and Y.E. Lozovik, “Plasma optics of nanostructures”, Phys. Solid State 45, 1327–1331 (2003). http://dx.doi.org/10.1134/1.1594251CrossrefGoogle Scholar

  • [19] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter”, Opt. Lett. 22, 475–477 (1997). PubMedCrossrefGoogle Scholar

  • [20] L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E50, 4094–4106 (1994). CrossrefGoogle Scholar

  • [21] B. Prade and J.Y. Vinet, “Guided optical waves in fibers with negative dielectric constant”, J. Lightwave Tech. 12, 6–18 (1994). http://dx.doi.org/10.1109/50.265728CrossrefGoogle Scholar

  • [22] H.M. Shen, “Plasma waveguide: A concept to transfer electromagnetic energy in space”, J. Appl. Phys. 69, 6827–6835 (1991). http://dx.doi.org/10.1063/1.347672CrossrefGoogle Scholar

  • [23] H.M. Shen and H.Y. Pao, “The plasma waveguide with a finite thickness of cladding”, J. Appl. Phys. 70, 6653–6662 (1991). http://dx.doi.org/10.1063/1.349837CrossrefGoogle Scholar

  • [24] H. Shin, P.B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion on the transmission properties of subwavelength cylindrical hole”, Phys. Rev. B72, 085436 (2005). CrossrefGoogle Scholar

  • [25] K.Y. Kim, Y.K. Cho, H.S. Tae, and J.H. Lee, “Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics”, Opt. Express 14, 320–330 (2006). http://dx.doi.org/10.1364/OPEX.14.000320CrossrefGoogle Scholar

  • [26] M.M. Sigalas, C.T. Chan, K.M. Ho, and C.M. Soukoulis, “Metallic photonic band-gap materials”, Phys. Rev. B52, 11744–11751 (1995). CrossrefGoogle Scholar

  • [27] L.M. Li, Z.Q. Zhang, and X. Zhang, “Transmission and absorption properties of two-dimensional metallic photonic-band-gap materials”, Phys. Rev. B58, 15589–15594 (1998). CrossrefGoogle Scholar

  • [28] X. Zhang, “Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens”, Phys. Rev. B70, 195110 (2004). CrossrefGoogle Scholar

  • [29] X. Zhang, “Absolute negative refraction and imaging of unpolarized electromagnetic waves by two-dimensional photonic crystals”, Phys. Rev. B70, 205102 (2004). CrossrefGoogle Scholar

  • [30] X. Zhang, “Extraordinary transmissions on cylinder metallic gratings with very narrow slits”, Phys. Lett. A331, 252–257 (2004). CrossrefGoogle Scholar

  • [31] X. Zhang and L.M. Li, “Creating all-angle-negative refraction by using insertion”, Appl. Phys. Lett. 86, 121103 (2005). CrossrefGoogle Scholar

  • [32] X. Zhang, “Effect of interface and disorder on the far-field image in a two-dimensional photonic-crystal-based flat lens”, Phys. Rev. B71, 165116 (2005). CrossrefGoogle Scholar

  • [33] X. Zhang, “Subwavelength far-field resolution in a square two-dimensional photonic crystal”, Phys. Rev. E71, 037601 (2005). CrossrefGoogle Scholar

  • [34] X. Zhang, “Tunable non-near-field focus and imaging of an unpolarized electromagnetic wave”, Phys. Rev. B71, 235103 (2005). CrossrefGoogle Scholar

  • [35] X. Zhang, “Active lens realized by two-dimensional photonic crystal”, Phys. Lett. A337, 457–462 (2005). CrossrefGoogle Scholar

  • [36] A.D. Rakić, A.B. Djurišić, J.M. Elazar, and M.L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices”, Appl. Opt. 37, 5271–5283 (1998). http://dx.doi.org/10.1364/AO.37.005271CrossrefGoogle Scholar

  • [37] C.A. Pfeiffer, E.N. Economou, and K.L. Ngai, “Surface polaritons in a circularly cylindrical interfaces: Surface plasmons”, Phys. Rev. B10, 3038–3051 (1974). CrossrefGoogle Scholar

  • [38] J.A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, Inc., New York, 1941. Google Scholar

  • [39] R. Gordon and A.G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal”, Opt. Express 13, 1933–1938 (2005). http://dx.doi.org/10.1364/OPEX.13.001933CrossrefGoogle Scholar

  • [40] A. Kapoor and G.S. Singh, “Mode classification in cylindrical dielectric waveguides”, J. Lightwave Tech. 18, 849–852 (2000). http://dx.doi.org/10.1109/50.848397CrossrefGoogle Scholar

  • [41] R.A. Waldron, “Theory and potential applications of backward waves in nonperiodic inhomogeneous waveguides”, Proc. IEE 111, 1659–1667 (1964). Google Scholar

  • [42] P.J.B. Clarricoats, “Circular-waveguide backward-wave structures”, Proc. IEE 110, 261–270 (1963). Google Scholar

About the article

Published Online: 2006-09-01

Published in Print: 2006-09-01

Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-006-0031-z.

Export Citation

© 2006 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Fanmin Kong, Kang Li, Bae-Ian Wu, Hui Huang, Hongsheng Chen, and Jin Au Kong
Progress In Electromagnetics Research, 2007, Volume 76, Page 449
T. Antosiewicz and T. Szoplik
Opto-Electronics Review, 2008, Volume 16, Number 4

Comments (0)

Please log in or register to comment.
Log in