Jump to ContentJump to Main Navigation
Show Summary Details

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
Online
ISSN
1896-3757
See all formats and pricing

 


Select Volume and Issue

Issues

Design and simulation of single-electrode liquid crystal phased arrays

B. Bellini
  • Dpto. Tecnología Fotónica, ETSI Telecommunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, E-28040, Madrid, Spain
  • :
/ M. Geday
  • Dpto. Tecnología Fotónica, ETSI Telecommunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, E-28040, Madrid, Spain
  • :
/ N. Bennis
  • Dpto. Tecnología Fotónica, ETSI Telecommunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, E-28040, Madrid, Spain
  • :
/ A. Spadło
  • Dpto. Tecnología Fotónica, ETSI Telecommunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, E-28040, Madrid, Spain
  • :
/ X. Quintana
  • Dpto. Tecnología Fotónica, ETSI Telecommunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, E-28040, Madrid, Spain
  • :
/ J. Otón
  • Dpto. Tecnología Fotónica, ETSI Telecommunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, E-28040, Madrid, Spain
  • :
/ R. Dąbrowski
  • Institute of Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908, Warsaw, Poland
  • :
Published Online: 2006-12-01 | DOI: https://doi.org/10.2478/s11772-006-0035-8

Abstract

Liquid crystal (LC) phased arrays and gratings have been employed in optical switching and routing [1]. These diffractive optic elements are of great interest because they can be scaled up to a large number of elements and their optical properties can be electrically addressed with a low driving voltage. LC phase gratings have been achieved either by periodic addressing of pixels or by using periodically-modified structures. The latter approach leads to less reconfigurable devices but the addressing is simpler.

In this paper we focus on optical phased arrays where the phase is varied either continuously or discretely and where the periodicity is induced by electrode configuration. We first describe a possible structure based on a conductive silicon wafer. We argue that this structure can induce either continuously or discretely varying arrays while applying single voltage to the array. In the second part we simulate the behaviour of such arrays. We base the simulation on a LC synthesized at the Military University of Technology, this high-birefringence nematic LC shows in a 4-μm thick cell a linear phase shift range of more than 360° between 1.2 V and 1.8 V. We calculate the distribution of the LC molecule director and assess the performance of the array with respect to the applied voltage. Finally, the relevance of such technology for switchable phased arrays is discussed.

Keywords: liquid crystals; phased arrays; silicon

  • [1] J.L. De Bougrenet De La Tocnaye, “Engineering liquid crystals for optimal uses in optical communication systems”, Liq. Cryst. 31, 241–269 (2004). http://dx.doi.org/10.1080/02678290410001648570 [Crossref]

  • [2] K.M. Johnson, D.J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon”, IEEE J. Quant. Electron. 29, 699–714 (1993). http://dx.doi.org/10.1109/3.199323 [Crossref]

  • [3] S. Serati and J. Stockley, “Advanced liquid crystal on silicon optical phased arrays”, IEEE Aerospace Conf. Proc. 3, 1395–1402 (2002).

  • [4] H.S. Kwok and H.C. Huang, “Liquid crystal on silicon microdisplays”, Proc. 7 th Int. Conf. on Solid-State and Integrated Circuit Technology 3, 1987–1990 (2004).

  • [5] D.J. McKnight, K.M. Johnson, and R.A. Serati, “256×256 liquid-crystal-on-silicon spatial light modulator”, Appl. Opt. 33, 2775–2784 (1994). http://dx.doi.org/10.1364/AO.33.002775 [Crossref]

  • [6] H. De Smet, D. Cuypers, A. Van Calster, J. Van den Steen, and G. Van Doorselaer, “Design, fabrication and evaluation of a high-performance XGA VAN-LCOS microdisplay”, Displays 23, 89–98 (2002). http://dx.doi.org/10.1016/S0141-9382(02)00014-8 [Crossref]

  • [7] J. Chen, P.J. Bos, H. Vithana, and D.L. Johnson, “An electro-optically controlled liquid crystal diffraction grating”, Appl. Phys. Lett. 67, 2588–2590 (1995). http://dx.doi.org/10.1063/1.115140 [Crossref]

  • [8] M. Honma and T. Nose, “Polarization-independent liquid crystal grating fabricated by microrubbing process”, Jap. J. Appl. Phys. 42, 6992–6997 (2003). http://dx.doi.org/10.1143/JJAP.42.6992 [Crossref]

  • [9] R. Caputo, L. De Sio, A.V. Sukhov, N.V. Tabirian, A. Veltri, and C. Umeton, “Realization of a new kind of switchable holographic grating made of liquid crystal films separated by slices of polymeric material (POLICRYPS)”, Opt. Lett. 29, 1261–1263 (2004). http://dx.doi.org/10.1364/OL.29.001261 [Crossref]

  • [10] D.X. Xu, P. Cheben, B. Lamontagne, S. Janz, and W.N. Ye, “Silicon-on-insulator (SOI) as a photonic platform”, 207 th ECS Meeting, 554 (2005).

  • [11] L. Wosinski, “Silica-on-silicon technology for photonic integrated devices”, Proc. 6 th Int. Conf. on Transparent Optical Networks 2, 274–279 (2004).

  • [12] B. Bellini, J.F. Larchanché, J.P. Vilcot, D. Decoster, R. Beccherelli, and A. d’Alessandro, “Photonic devices based on preferential etching”, Appl. Optics 44, 7181–7186 (2005). http://dx.doi.org/10.1364/AO.44.007181 [Crossref]

  • [13] L. Kurowski, D. Bernard, E. Constant, and D. Decoster, “Electron-beam-induced reactivation of Si dopants in hydrogenated two-dimensional AlGaAs heterostructures: a possible new route for III V nanostructure fabrication”, J. Phys. Cond. Mat. 16, S127–S132 (2004). http://dx.doi.org/10.1088/0953-8984/16/2/015 [Crossref]

  • [14] D.P. Resler, D.S. Hobbs, R.C. Sharp, L.J. Friedman, and T.A. Dorschner, “High-efficiency liquid crystal optical phased-array beam steering”, Opt. Lett. 21, 689–691 (1996). http://dx.doi.org/10.1364/OL.21.000689 [Crossref]

  • [15] G.F. Barrick, P.J. Bos, C.E. Titus, and B.K. Winker, “Computing the liquid crystal director field in optical phased arrays”, Opt. Eng. 43, 924–932 (2004). http://dx.doi.org/10.1117/1.1666821 [Crossref]

  • [16] K.H. Fan Chiang, S.H. Chen, and S.T. Wu, “Diffraction effect on high-resolution liquid-crystal-on-silicon devices”, Jap. J. Appl. Phys. 44, 3068–3072 (2005). http://dx.doi.org/10.1143/JJAP.44.3068 [Crossref]

  • [17] R.A. Soref and J.P. Lorenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 μm”, IEEE J. Quant. Electron. 22, 873–879 (1986). http://dx.doi.org/10.1109/JQE.1986.1073057 [Crossref]

  • [18] C.V. Brown, E.E. Kriezis, and S.J. Elston, “Optical diffraction from a liquid crystal phase grating”, J. Appl. Phys. 91, 3495–3500 (2002). http://dx.doi.org/10.1063/1.1446216 [Crossref]


Published Online: 2006-12-01

Published in Print: 2006-12-01


Citation Information: Opto-Electronics Review. Volume 14, Issue 4, Pages 269–273, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-006-0035-8, December 2006

© 2006 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d'Alessandro, and R. Beccherelli
Lab on a Chip, 2012, Volume 12, Number 19, Page 3598
[2]
S. Valyukh, V. Chigrinov, H. S. Kwok, and H. Arwin
Optics Express, 2012, Volume 20, Number 14, Page 15209
[3]
R. Dąbrowski, P. Kula, Z. Raszewski, W. Piecek, J. M. Otón, and A. Spadło
Ferroelectrics, 2010, Volume 395, Number 1, Page 116
[4]
Bob Bellini and Romeo Beccherelli
Journal of Physics D: Applied Physics, 2009, Volume 42, Number 4, Page 045111

Comments (0)

Please log in or register to comment.