Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
Online
ISSN
1896-3757
See all formats and pricing
In This Section
Volume 15, Issue 1 (Mar 2007)

Issues

Optimal period for diffraction gratings recorded in polymer dispersed liquid crystals

A. Aslanyan
  • Department of Physics, Yerevan State University, 1 Manougyan Str., 375049, Yerevan, Armenia
  • Email:
/ A. Galstyan
  • Department of Physics, Yerevan State University, 1 Manougyan Str., 375049, Yerevan, Armenia
  • Email:
Published Online: 2007-03-01 | DOI: https://doi.org/10.2478/s11772-006-0058-1

Abstract

New diffusion model of recording diffraction gratings in the media of PDLC is described in which besides diffusion of monomer molecules also diffusion of polymer molecules and non-locality of diffusion coefficient are taken into account. It lets us to explain why diffraction efficiency is low for low and high values of intensities of grating recording beam. With the considered model, we have theoretically got optimal period for grating recording.

Keywords: liquid crystal; polymer; grating; diffraction

  • [1] P. Pilot, Y.B. Boiko, and T.V. Galstian, “Near-IR (800–855 nm) sensitive holographic photopolymer dispersed liquid crystal materials”, Proc. SPIE 3635, 143–150 (1999). Google Scholar

  • [2] P. Nagtegaele and T.V. Galstian, “Holographic characterization of near infrared photopolymerizable materials”, Synthetic Metals 127, 85–87 (2002). http://dx.doi.org/10.1016/S0379-6779(01)00601-4CrossrefGoogle Scholar

  • [3] R. Kaputo, A. Sukhov, C. Umeton, and R. Ushakov, “Formation of a grating of submicron nematic layers by photopolymerization of nematic-containing mixtures”, JETP 118, 1374–1383 (2000). Google Scholar

  • [4] R.L. Sutherland, V.P. Tondiglia, L.V. Natarajan, T.J. Bunning, and W.W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film”, Opt. Lett. 20, 1325 (1995). http://dx.doi.org/10.1364/OL.20.001325CrossrefGoogle Scholar

  • [5] I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth”, J. Mod. Opt. 45, 1465–1477 (1998). http://dx.doi.org/10.1080/095003498151140CrossrefGoogle Scholar

  • [6] F. Roussel and B. Fung, “Anchoring behaviour, orientational order, and reorientation dynamics of nematic liquid crystal droplets dispersed in cross-linked polymer networks droplets dispersed in cross-linked polymer networks”, Phys. Rev. E67, 041709.1-041709.4 (2003). Google Scholar

  • [7] Y.H. Fan, H. Ren, and S.T. Wu, “Switchable fresnel lens using polymer-stabilised liquid crystals”, Optics Express 11, 3080–3086 (2003). http://dx.doi.org/10.1364/OE.11.003080CrossrefGoogle Scholar

  • [8] G. Zhao and P. Mouroulis, “Extension of a diffusion model for holographic photopolymers”, J. Mod. Opt. 41, 1929–2573 (1994). CrossrefGoogle Scholar

  • [9] J.T. Sheridan and J.R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer”, J. Opt. Soc. Am. 17, 1108 (2000). CrossrefGoogle Scholar

  • [10] D. Duca, A.V. Sukhov, and C. Umeton, “Detailed experimental investigation on recording of switchable diffraction gratings in polymer dispersed liquid crystal films by UV laser curing”, Liquid Crystals 26, 931–937 (1999). http://dx.doi.org/10.1080/026782999204633CrossrefGoogle Scholar

  • [11] J.T. Sheridan, T.O. Neill, and J.V. Kelly, “Holographic data storage: optimized scheduling using the nonlocal polymerization-driven diffusion model”, J. Opt. Soc. Am. B21, 1443–1451 (2004). http://dx.doi.org/10.1364/JOSAB.21.001443CrossrefGoogle Scholar

  • [12] S. Gallego, M. Ortuno, C. Neipp, I. Pascual, J.V. Kelly, and J.T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories”, Optics Express 13, 3543–3557 (2005). http://dx.doi.org/10.1364/OPEX.13.003543CrossrefGoogle Scholar

  • [13] J.R. Lawrence, F.T. O’Neill, and J.T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation”, J. Opt. Soc. Am. B19, 621–629 (2002). CrossrefGoogle Scholar

  • [14] S.D. Wu and E.N. Glytsis, “Holographic grating formation in photopolymers: analysis an experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis”, J. Opt. Soc. Am. 20, 1177–1187 (2003). CrossrefGoogle Scholar

  • [15] R.S. Akopyan, A.L. Aslanyan, and A.V. Galstyan, “About not monotonous hologram diffraction efficiency dependence in photopolymeric materials on average intensity of the writing laser”, J. Contemp. Phys. 39, 327–330 (2004). Google Scholar

  • [16] H. Kogelnik, “Coupled wave theory for thick holographic gratings”, Bell Syst. Tech. J. 48, 2909–2947 (1969). CrossrefGoogle Scholar

About the article

Published Online: 2007-03-01

Published in Print: 2007-03-01


Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-006-0058-1.

Export Citation

© 2007 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Y. J. Liu and X. W. Sun
Advances in OptoElectronics, 2008, Volume 2008, Page 1
[3]
Michael R Gleeson and John T Sheridan
Journal of Optics A: Pure and Applied Optics, 2009, Volume 11, Number 2, Page 024008

Comments (0)

Please log in or register to comment.
Log in