Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 16, Issue 2


Detection and characterization of breast tumours by time-domain scanning optical mammography

H. Rinneberg / D. Grosenick / K. Moesta / H. Wabnitz / J. Mucke / G. Wübbeler / R. Macdonald / P. Schlag
Published Online: 2008-03-26 | DOI: https://doi.org/10.2478/s11772-008-0004-5


The paper gives a short overview of various methods of optical mammography, emphasizing scanning time-domain mammography. The results of a clinical study on time-domain optical mammography are reviewed, comprising 154 patients carrying a total of 102 carcinomas validated by histology. A visibility score attributed to each carcinoma as qualitative measure of tumour detectability indicates acceptable sensitivity but poor specificity for discrimination between malignant and benign lesions. Likewise, a multi-variate statistical analysis yields sensitivity and specificity between 80% and 85% for tumour detection and discrimination with respect to normal (healthy) breast tissue, but values less than 70% for discrimination between malignant and benign breast lesions, being too low to be of clinical relevance. For 87 of the 88 tumours detected retrospectively in both projection optical mammograms, optical properties and tissue parameters were derived based on the diffraction of photon density waves by a spherical inhomogeneity as forward model. Following injection of a bolus of indocyanine green as non-targeted absorbing contrast agent, dynamic contrast-enhanced time-domain optical mammography was carried out on a small number of patients, but no differences in wash-out kinetics of indocyanine green between tumours and healthy breast tissue were observed.

Keywords: time-domain optical mammography; tumour detectability; tissue absorption and scattering coefficients; tissue total haemoglobin concentration; indocyanine green

  • [1] A. Smith, “Full-field breast tomosynthesis,” Radiol. Manage. 27, 25–31 (2005). Google Scholar

  • [2] T. Wu, R.H. Moore, A. Rafferty, and D.B. Kopans, “A comparison of reconstruction algorithms for breast tomosynthesis”, Med. Phys. 31, 2636–2647 (2004). http://dx.doi.org/10.1118/1.1786692CrossrefGoogle Scholar

  • [3] S. Kappadath and C. Shaw, “Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections”, Med. Phys. 32, 3395–3408 (2005). http://dx.doi.org/10.1118/1.2064767CrossrefGoogle Scholar

  • [4] A. Malich, M. Facius, R. Anderson, J. Bottcher, D. Sauner, A. Hansch, C. Marx, A. Petrovitch, S. Pfleiderer, and W. Kaiser, “Influence of size and depth on accuracy of electrical impedance scanning”, Eur. Radiol. 13, 2441–2446 (2003). http://dx.doi.org/10.1007/s00330-003-1988-3CrossrefGoogle Scholar

  • [5] T. Diebold, V. Jacobi, B. Scholz, C. Hensel, C. Solbach, M. Kaufmann, F. Viana, J. Balzer, J. Peters, and T. Vogl, “Value of electrical impedance scanning in the evaluation of BI-RADS™ II/IV/V-lesions”, Technol. Cancer Res. T. 4, 93–97 (2005). CrossrefGoogle Scholar

  • [6] J. Lorenzen, R. Sinkus, M. Lorenzen, M. Dargatz, C. Leussler, P. Roschmann, and G. Adam, “MR elastography of the breast: preliminary clinical results”, Röfo. Fortschr. Geb. Röntgenstr. Bildgeb. Verfahr. 174, 830–834 (2002). http://dx.doi.org/10.1055/s-2002-32690CrossrefGoogle Scholar

  • [7] P.J. Bolan, S. Meisamy, E.H. Baker, J. Lin, T. Emory, M. Nelson, L.I. Everson, D. Yee, and M. Garwood, “In vivo quantification of choline compounds in the breast with 1H MR spectroscopy”, Magn. Reson. Med. 50, 1134–1143 (2003). http://dx.doi.org/10.1002/mrm.10654Google Scholar

  • [8] M.A. Thomas, N. Wyckoff, K. Yue, N. Binesh, S. Banakar, H.-K. Chung, J. Sayre, and N. DeBruhl, “Two-dimensional MR spectroscopic characterization of breast cancer in vivo”, Technol. Cancer Res. T. 4, 99–106 (2005). CrossrefGoogle Scholar

  • [9] M.D. McDonough, E.R. DePeri, and B.A. Mincey, “The role of positron emission tomographic imaging in breast cancer”, Curr. Oncol. Rep. 6, 62–68 (2004). http://dx.doi.org/10.1007/s11912-996-0011-yCrossrefGoogle Scholar

  • [10] E.L. Rosen, T.G. Turkington, M.S. Soo, J.A. Baker, and R.E. Coleman, “Detection of primary breast carcinoma with a dedicated large-field-of-view FDG PET mammography device: Initial experience”, Radiology 234, 527–534 (2005). http://dx.doi.org/10.1148/radiol.2342040654CrossrefGoogle Scholar

  • [11] I.N. Weinberg, D. Beylin, V. Zavarzin, S. Yarnall, P.Y. Stepanov, E. Anashkin, D. Narayanan, S. Dolinsky, K. Lauckner, and L.P. Alder, “Positron emission mammography: high-resolution biochemical breast imaging”, Technol. Cancer Res. T. 4, 55–60 (2005). CrossrefGoogle Scholar

  • [12] M.S. Patterson, B. Chance, and B.C. Wilson, “Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties”, Appl. Opt. 28, 2331–2336 (1989). CrossrefGoogle Scholar

  • [13] S.R. Arridge, “Optical tomography in medical imaging”, Inverse Probl. 15, R41–R93 (1999). http://dx.doi.org/10.1088/0266-5611/15/2/022CrossrefGoogle Scholar

  • [14] A.E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A.J. Berger, D. Hsiang, J. Butler, R.F. Holcombe, and B.J Tromberg, “Spectroscopy enhances the information content of optical mammography”, J. Biomed. Opt. 7, 60–71 (2002). http://dx.doi.org/10.1117/1.1427050CrossrefGoogle Scholar

  • [15] D. Grosenick, K.T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P.M. Schlag, and H. Rinneberg, “Time-domain optical mammography: Initial clinical results on detection and characterization of breast tumours”, Appl. Opt. 42, 3170–3186 (2003). http://dx.doi.org/10.1364/AO.42.003170CrossrefGoogle Scholar

  • [16] D. Grosenick, K.T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P.M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients”, Phys. Med. Biol. 50, 2429–2449 (2005). http://dx.doi.org/10.1088/0031-9155/50/11/001CrossrefGoogle Scholar

  • [17] D. Grosenick, H. Wabnitz, K.T. Moesta, J. Mucke, P.M. Schlag, and H. Rinneberg, “Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas”, Phys. Med. Biol. 50, 2451–2468 (2005). http://dx.doi.org/10.1088/0031-9155/50/11/002CrossrefGoogle Scholar

  • [18] H. Rinneberg, D. Grosenick, K.T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Möller, B. Wassermann, and P.M. Schlag, “Scanning time-domain optical mammography: Detection and characterization of breast tumours in vivo”, Technol. Cancer Res. T. 4, 483–496 (2005). CrossrefGoogle Scholar

  • [19] M.A. Franceschini, K.T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. Mantulin, M. Seeber, P.M. Schlag, and M. Kaschke, “Frequency-domain techniques enhance optical mammography: initial clinical results”, Proc. Natl. Acad. Sci. USA 94, 6468–6473 (1997). http://dx.doi.org/10.1073/pnas.94.12.6468CrossrefGoogle Scholar

  • [20] L. Götz, S.H. Heywang-Köbrunner, O. Schütz, and H. Siebold, “Optical mammography on preoperative patients (Optische Mammographie an präoperativen Patientinnen)”, Akt. Radiol. 8, 31–33 (1998). Google Scholar

  • [21] H. Dehghani, B.W. Pogue, S.P. Poplack, and K.D. Paulsen, “Multi-wavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results”, Appl. Opt. 42, 135–145 (2003). http://dx.doi.org/10.1364/AO.42.000135CrossrefGoogle Scholar

  • [22] S.B. Colak, M.B. van der Mark, G.W. ’t Hooft, J.H. Hoogenraad, E.S. van der Linden, and F.A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection”, IEEE J. Sel. Top. Quant. 5, 1143–1158 (1999). http://dx.doi.org/10.1109/2944.796341CrossrefGoogle Scholar

  • [23] D. Grosenick, H. Wabnitz, H. Rinneberg, K.T. Moesta, and P. Schlag, “Development of a time-domain optical mammograph and first in vivo applications”, Appl. Opt. 38, 2927–2943 (1999). http://dx.doi.org/10.1364/AO.38.002927CrossrefGoogle Scholar

  • [24] A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, “Four-wavelength time-resolved optical mammography in the 680–980-nm range”, Opt. Lett. 28, 1138–1140 (2003). http://dx.doi.org/10.1364/OL.28.001138CrossrefGoogle Scholar

  • [25] T. Yates, J.C. Hebden, A. Gibson, N. Everdell, S.R. Arridge, and M. Douek, “Optical tomography of the breast using a multi-channel time-resolved imager”, Phys. Med. Biol. 50, 2503–2517 (2005). http://dx.doi.org/10.1088/0031-9155/50/11/005CrossrefGoogle Scholar

  • [26] J.P. Culver, R. Choe, M.J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A.G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain-continuous wave clinical system for breast imaging”, Med. Phys. 30, 235–247 (2003). http://dx.doi.org/10.1118/1.1534109CrossrefGoogle Scholar

  • [27] J.C. Hebden and S.R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain”, Appl. Opt. 35, 6788–6796 (1996). http://dx.doi.org/10.1364/AO.35.006788CrossrefGoogle Scholar

  • [28] S. Carraresi, T.S.M. Shatir, F. Martelli, and G. Zaccanti, “Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration”, Appl. Opt. 40, 4622–4632 (2001). http://dx.doi.org/10.1364/AO.40.004622CrossrefGoogle Scholar

  • [29] B. Wassermann, A. Kummrow, K.T. Moesta, D. Grosenick, J. Mucke, H. Wabnitz, M. Möller, R. Macdonald, P.M. Schlag, and H. Rinneberg, “In-vivo tissue optical properties derived by linear perturbation theory for edge-corrected time-domain mammograms”, Opt. Express 13, 8571–8583 (2005). http://dx.doi.org/10.1364/OPEX.13.008571CrossrefGoogle Scholar

  • [30] D. Grosenick, H. Wabnitz, K.T. Moesta, J. Mucke, M. Möller, C. Stroszczynski, J. Stößel, B. Wassermann, P.M. Schlag, and H. Rinneberg, “Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography”, Phys. Med. Biol. 49, 1165–1181 (2004). http://dx.doi.org/10.1088/0031-9155/49/7/006CrossrefGoogle Scholar

  • [31] H.Q. Woodard and D.R. White, “The composition of body tissues”, Brit. J. Radiol. 69, 1209–1218 (1986). http://dx.doi.org/10.1259/0007-1285-59-708-1209CrossrefGoogle Scholar

  • [32] J.W. Tukey, Exploratory Data Analysis, Addison Wesley Publ., Reading, MA, 1977. Google Scholar

  • [33] P. Taroni, A. Pifferi, A. Torricelli, L. Spinelli, G.M. Danesini, and R. Cubeddu, “Do shorter wavelengths improve contrast in optical mammography?”, Phys. Med. Biol. 49, 1203–1215 (2004). http://dx.doi.org/10.1088/0031-9155/49/7/008CrossrefGoogle Scholar

  • [34] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, John Wiley, New York, 2001. Google Scholar

  • [35] M. Gurfinkel, A.B. Thompson, W. Ralston, T.L. Troy, A.L. Moore, T.A. Moore, J.D. Gust, D. Tatman, J.S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R.H. Mayer, D.J. Hawrysz, and E.M. Sevick Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumour tissue using fluorescence near-infrared reflectance imaging: a case study”, Photochem. Photobiol. 72, 94–102 (2000). http://dx.doi.org/10.1562/0031-8655(2000)072<0094:POIAHC>2.0.CO;2CrossrefGoogle Scholar

  • [36] X. Intes, J. Ripoll, Y. Chen, S. Nioka, A.G. Yodh, and B. Chance, “In vivo continuous-wave optical breast imaging enhanced with indocyanine green”, Med. Phys. 30, 1039–1047 (2003). http://dx.doi.org/10.1118/1.1573791CrossrefGoogle Scholar

  • [37] D.A. Boas, M.A. O’Leary, B. Chance, and A.G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: Analytic solution and applications”, Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994). http://dx.doi.org/10.1073/pnas.91.11.4887CrossrefGoogle Scholar

  • [38] P. Vaupel, S. Briest, and M. Hoeckel, “Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications”, Wien. Med. Wochenschr. 152, 334–342 (2004). http://dx.doi.org/10.1046/j.1563-258X.2002.02032.xCrossrefGoogle Scholar

  • [39] R.L.P. van Veen, A. Amelink, M. Menke-Pluymers, C. van der Pol, and H.J.C.M. Sterenborg, “Optical biopsy of breast tissue using differential path-length spectroscopy”, Phys. Med. Biol. 50, 2573–2581 (2005). http://dx.doi.org/10.1088/0031-9155/50/11/009CrossrefGoogle Scholar

  • [40] K.T. Moesta, S. Fantini, H. Jess, S. Totkas, M.A. Franceschini, M. Kaschke, and P.M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning mammography”, J. Biomed. Opt. 3, 129–136 (1998). http://dx.doi.org/10.1117/1.429869CrossrefGoogle Scholar

  • [41] P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, and R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm”, J. Biomed. Opt. 9, 464–473 (2004). http://dx.doi.org/10.1117/1.1695561CrossrefGoogle Scholar

  • [42] X. Cheng, J.M. Mao, R. Bush, D.B. Kopans, R.H. Moore, and M. Chorlton, “Breast cancer detection by mapping haemoglobin concentration and oxygen saturation”, Appl. Opt. 42, 6412–6421 (2003). http://dx.doi.org/10.1364/AO.42.006412CrossrefGoogle Scholar

About the article

Published Online: 2008-03-26

Published in Print: 2008-06-01

Citation Information: Opto-Electronics Review, Volume 16, Issue 2, Pages 147–162, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-008-0004-5.

Export Citation

© 2008 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in