Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
See all formats and pricing
More options …
Volume 16, Issue 2 (Jun 2008)


Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy

A. Torricelli
  • IIT, ULTRAS-INFM-CNR and IFN-CNR, Politecnico di Milano-Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20123, Milano, Italy
  • Email:
/ D. Contini
  • IIT, ULTRAS-INFM-CNR and IFN-CNR, Politecnico di Milano-Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20123, Milano, Italy
  • Email:
/ A. Pifferi
  • IIT, ULTRAS-INFM-CNR and IFN-CNR, Politecnico di Milano-Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20123, Milano, Italy
  • Email:
/ L. Spinelli
  • IIT, ULTRAS-INFM-CNR and IFN-CNR, Politecnico di Milano-Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20123, Milano, Italy
  • Email:
/ R. Cubeddu
  • IIT, ULTRAS-INFM-CNR and IFN-CNR, Politecnico di Milano-Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20123, Milano, Italy
  • Email:
Published Online: 2008-03-26 | DOI: https://doi.org/10.2478/s11772-008-0011-6


We present a description of evolution of time-resolved systems developed at the Department of Physics, Politecnico di Milano for tissue oximetry and functional brain imaging. From a single source and 4-channel set-up we have upgraded to a potentially 18-sources and 64-channel device. An example of sensitivity of the latest set-up is reported for a motor task experiment. A short discussion on the next generation time-resolved instrumentation for functional studies is also presented.

Keywords: brain near-infrared spectroscopy; time-resolved imaging; medical optics instrumentation; photon migration

  • [1] G.S. Berns, “Functional neuroimaging”, Life Sci. 65, 2531–2540 (1999). http://dx.doi.org/10.1016/S0024-3205(99)00297-0CrossrefGoogle Scholar

  • [2] G. Strangman, D.A. Boas, and J. Sutton, “Non-invasive neuroimaging using near-infrared light”, Biol. Psychiat. 52, 679–693 (2002). http://dx.doi.org/10.1016/S0006-3223(02)01550-0CrossrefGoogle Scholar

  • [3] Y. Chen, D.R. Tailor, X. Intes, and B. Chance, “Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation”, Phys. Med. Biol. 48, 417–427 (2003). http://dx.doi.org/10.1088/0031-9155/48/4/301CrossrefGoogle Scholar

  • [4] A. Kleinschmidt, H. Obrig, M. Requardt, K.D. Merbodt, U. Dirnagl, A. Villringer, and J. Frahn, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy”, J. Cereb. Blood F. Met. 16, 817–826 (1996). http://dx.doi.org/10.1097/00004647-199609000-00006CrossrefGoogle Scholar

  • [5] V. Toronov, A. Webb, J.H. Choi, M. Wolf, A. Michalos, E. Gratton, and D. Hueber, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging”, Med. Phys. 28, 521–527 (2001). http://dx.doi.org/10.1118/1.1354627CrossrefGoogle Scholar

  • [6] G. Strangman, J.P. Culver, J.H. Thompson, and D.A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation”, Neuroimage 17, 719–731 (2002). http://dx.doi.org/10.1016/S1053-8119(02)91227-9CrossrefGoogle Scholar

  • [7] J.C. Hebden, “Advances in optical imaging of the newborn infant brain”, Psychophysiol. 40, 501–510 (2003). http://dx.doi.org/10.1111/1469-8986.00052CrossrefGoogle Scholar

  • [8] A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function”, Trends Neurosci. 20, 435–442 (1997). http://dx.doi.org/10.1016/S0166-2236(97)01132-6CrossrefGoogle Scholar

  • [9] H. Obrig and A. Villringer, “Beyond the visible-imaging the human brain with light”, J. Cereb. Blood. F. Met. 23, 1–18 (2003). http://dx.doi.org/10.1097/00004647-200301000-00001CrossrefGoogle Scholar

  • [10] Y. Hoshi, “Functional near-infrared optical imaging: utility and limitations in human brain mapping”, Psychophysiol. 40, 511–520 (2003). http://dx.doi.org/10.1111/1469-8986.00053CrossrefGoogle Scholar

  • [11] D.A. Boas, A.M. Dale, and M.A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy”, Neuroimage 23, S275–S288 (2004). http://dx.doi.org/10.1016/j.neuroimage.2004.07.011CrossrefGoogle Scholar

  • [12] D.A. Boas and R.D. Frostig, “Optics in neuroscience”, J. Biomed. Opt. 10, 011001 (2005). CrossrefGoogle Scholar

  • [13] A.P. Gibson, A.P. Gibson, J.C. Hebden, and S.R. Arridge, “Recent advances in diffuse optical imaging”, Phys. Med. Biol. 50, R1–R43, (2005). http://dx.doi.org/10.1088/0031-9155/50/4/R01CrossrefGoogle Scholar

  • [14] S.R. Arridge, “Optical tomography in medical imaging”, Inverse Probl. 15, R41–R93, (1999). http://dx.doi.org/10.1088/0266-5611/15/2/022CrossrefGoogle Scholar

  • [15] A.M. Siegel, J.J. Marota, and D. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system”, Opt. Express 4, 287–298 (1999). CrossrefGoogle Scholar

  • [16] M.A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution”, Opt. Express 6, 49–57 (2000). http://dx.doi.org/10.1364/OE.6.000049CrossrefGoogle Scholar

  • [17] M.A. Franceschini, E. Gratton, and S. Fantini, “Noninvasive measurement of neuronal activity with near-infrared optical imaging”, Neuroimage 21, 372–386 (2004). http://dx.doi.org/10.1016/j.neuroimage.2003.09.040CrossrefGoogle Scholar

  • [18] R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wave-length multichannel time-resolved reflectance”, Appl. Opt. 38, 3670–3680 (1999). http://dx.doi.org/10.1364/AO.38.003670CrossrefGoogle Scholar

  • [19] A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699 (2004). http://dx.doi.org/10.1088/0031-9155/49/5/003CrossrefGoogle Scholar

  • [20] D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain”, IEEE T. Instrum. Meas. 55, 85–90 (2006). http://dx.doi.org/10.1109/TIM.2005.861502CrossrefGoogle Scholar

  • [21] D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Design and characterization of a fast 16-source 64-detector time-resolved system for functional NIR studies”, Proc. SPIE 5859, 116–123 (2005). Google Scholar

  • [22] M.F. Bear, B.W. Connors, and M.A. Paradiso, Neuroscience: Exploring the Brain, Williams & Wilkins, USA 1996. Google Scholar

  • [23] C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, M.S. McAdams, and B.J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer”, J. Opt. Soc. Am. A11, 2727–2741 (1994). http://dx.doi.org/10.1364/JOSAA.11.002727CrossrefGoogle Scholar

  • [24] Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media”, Phys. Med. Biol. 42, 1009–1023 (1997). http://dx.doi.org/10.1088/0031-9155/42/6/002CrossrefGoogle Scholar

  • [25] V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study”, J. Biomed. Opt. 10, 011012 (2005). CrossrefGoogle Scholar

  • [26] S. Prahl, Oregon Medical Laser Centre website (2001), http://omlc.ogi.edu/spectra. Google Scholar

  • [27] M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications”, J. Biomed. Opt. 12, 062104 (2007). Web of ScienceGoogle Scholar

  • [28] H. Wabnitz, M. Moller, A. Walter, and R. Macdonald, “Depth-selective analysis of responses to functional stimulation recorded with a time-domain NIR brain imager”, in Biomedical Optics Topical Meeting, p. ME34, Optical Society of America, Washington, DC, Fort Lauderdale, Florida, USA, 2006. Google Scholar

  • [29] M. Kacprzak, R. Maniewski, and A. Liebert, “Time-resolved optical imager for assessment of cerebral oxygenation”, J. Biomed. Opt. 12, 034019 (2007). Web of ScienceCrossrefGoogle Scholar

  • [30] Y. Yamashita, D. Yamashita, T. Yamanaka, T. Suzuki, E. Ohmae, Y. Veda, and M. Oda, “Time-resolved spectroscopy system for tissue monitoring and imaging”, OSA Biomedical Optics Topical Meeting 2004, WD3 (2004). Google Scholar

  • [31] E. Ohmae, R. Kitahara, S. Sareth, H. Yamada, K. Gekko, and K. Akasaka, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements”, Neuroimage 29, 697–705 (2006). http://dx.doi.org/10.1016/j.neuroimage.2005.08.008CrossrefGoogle Scholar

  • [32] K. Sakatani, D. Yamashita, T. Yamanaka, M. Oda, Y. Yamashita, T. Hoshino, N. Fujiwara, Y. Murata, and Y. Katayama, “Changes of cerebral blood oxygenation and optical pathlength during activation and deactivation in the prefrontal cortex measured by time-resolved near infrared spectroscopy”, Life Sci. 78, 2734–2741 (2005). http://dx.doi.org/10.1016/j.lfs.2005.10.045CrossrefGoogle Scholar

  • [33] J. Selb, D.K. Joseph, and D.A. Boas, “Time-gated optical system for depth-resolved functional brain imaging”, J. Biomed. Opt. 11, 044008 (2006). CrossrefGoogle Scholar

  • [34] A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber”, Opt. Lett. 29, 2405–2407 (2004). http://dx.doi.org/10.1364/OL.29.002405CrossrefGoogle Scholar

  • [35] www.hamamatsuphotonics.it. Google Scholar

  • [36] www.fianium.it. Google Scholar

  • [37] A. Leon-Saval, T.A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance”, Opt. Lett. 30, 2545–2527 (2005). http://dx.doi.org/10.1364/OL.30.002545CrossrefGoogle Scholar

  • [38] F. Zappa, S. Tisa, A. Gulinatti, A. Gallivanoni, and S. Cova, “Complete single-photon counting and timing module in a microchip”, Opt. Lett. 30, 1327–1329 (2005). http://dx.doi.org/10.1364/OL.30.001327CrossrefGoogle Scholar

About the article

Published Online: 2008-03-26

Published in Print: 2008-06-01

Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-008-0011-6.

Export Citation

© 2008 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in