Jump to ContentJump to Main Navigation
Show Summary Details

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

IMPACT FACTOR 2015: 1.611
Rank 98 out of 255 in category Electrical & Electronic Engineering and 43 out of 90 in Optics in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.624
Source Normalized Impact per Paper (SNIP) 2015: 1.387
Impact per Publication (IPP) 2015: 1.564

Open Access
See all formats and pricing


Select Volume and Issue


Functional brain imaging by multi-wavelength time-resolved near infrared spectroscopy

A. Torricelli
  • IIT, ULTRAS-INFM-CNR and IFN-CNR, Politecnico di Milano-Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20123, Milano, Italy
  • :
/ D. Contini
  • IIT, ULTRAS-INFM-CNR and IFN-CNR, Politecnico di Milano-Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20123, Milano, Italy
  • :
/ A. Pifferi
  • IIT, ULTRAS-INFM-CNR and IFN-CNR, Politecnico di Milano-Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20123, Milano, Italy
  • :
/ L. Spinelli
  • IIT, ULTRAS-INFM-CNR and IFN-CNR, Politecnico di Milano-Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20123, Milano, Italy
  • :
/ R. Cubeddu
  • IIT, ULTRAS-INFM-CNR and IFN-CNR, Politecnico di Milano-Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20123, Milano, Italy
  • :
Published Online: 2008-03-26 | DOI: https://doi.org/10.2478/s11772-008-0011-6


We present a description of evolution of time-resolved systems developed at the Department of Physics, Politecnico di Milano for tissue oximetry and functional brain imaging. From a single source and 4-channel set-up we have upgraded to a potentially 18-sources and 64-channel device. An example of sensitivity of the latest set-up is reported for a motor task experiment. A short discussion on the next generation time-resolved instrumentation for functional studies is also presented.

Keywords: brain near-infrared spectroscopy; time-resolved imaging; medical optics instrumentation; photon migration

  • [1] G.S. Berns, “Functional neuroimaging”, Life Sci. 65, 2531–2540 (1999). http://dx.doi.org/10.1016/S0024-3205(99)00297-0 [Crossref]

  • [2] G. Strangman, D.A. Boas, and J. Sutton, “Non-invasive neuroimaging using near-infrared light”, Biol. Psychiat. 52, 679–693 (2002). http://dx.doi.org/10.1016/S0006-3223(02)01550-0 [Crossref]

  • [3] Y. Chen, D.R. Tailor, X. Intes, and B. Chance, “Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation”, Phys. Med. Biol. 48, 417–427 (2003). http://dx.doi.org/10.1088/0031-9155/48/4/301 [Crossref]

  • [4] A. Kleinschmidt, H. Obrig, M. Requardt, K.D. Merbodt, U. Dirnagl, A. Villringer, and J. Frahn, “Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy”, J. Cereb. Blood F. Met. 16, 817–826 (1996). http://dx.doi.org/10.1097/00004647-199609000-00006 [Crossref]

  • [5] V. Toronov, A. Webb, J.H. Choi, M. Wolf, A. Michalos, E. Gratton, and D. Hueber, “Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging”, Med. Phys. 28, 521–527 (2001). http://dx.doi.org/10.1118/1.1354627 [Crossref]

  • [6] G. Strangman, J.P. Culver, J.H. Thompson, and D.A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation”, Neuroimage 17, 719–731 (2002). http://dx.doi.org/10.1016/S1053-8119(02)91227-9 [Crossref]

  • [7] J.C. Hebden, “Advances in optical imaging of the newborn infant brain”, Psychophysiol. 40, 501–510 (2003). http://dx.doi.org/10.1111/1469-8986.00052 [Crossref]

  • [8] A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function”, Trends Neurosci. 20, 435–442 (1997). http://dx.doi.org/10.1016/S0166-2236(97)01132-6 [Crossref]

  • [9] H. Obrig and A. Villringer, “Beyond the visible-imaging the human brain with light”, J. Cereb. Blood. F. Met. 23, 1–18 (2003). http://dx.doi.org/10.1097/00004647-200301000-00001 [Crossref]

  • [10] Y. Hoshi, “Functional near-infrared optical imaging: utility and limitations in human brain mapping”, Psychophysiol. 40, 511–520 (2003). http://dx.doi.org/10.1111/1469-8986.00053 [Crossref]

  • [11] D.A. Boas, A.M. Dale, and M.A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy”, Neuroimage 23, S275–S288 (2004). http://dx.doi.org/10.1016/j.neuroimage.2004.07.011 [Crossref]

  • [12] D.A. Boas and R.D. Frostig, “Optics in neuroscience”, J. Biomed. Opt. 10, 011001 (2005). [Crossref]

  • [13] A.P. Gibson, A.P. Gibson, J.C. Hebden, and S.R. Arridge, “Recent advances in diffuse optical imaging”, Phys. Med. Biol. 50, R1–R43, (2005). http://dx.doi.org/10.1088/0031-9155/50/4/R01 [Crossref]

  • [14] S.R. Arridge, “Optical tomography in medical imaging”, Inverse Probl. 15, R41–R93, (1999). http://dx.doi.org/10.1088/0266-5611/15/2/022 [Crossref]

  • [15] A.M. Siegel, J.J. Marota, and D. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system”, Opt. Express 4, 287–298 (1999). [Crossref]

  • [16] M.A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution”, Opt. Express 6, 49–57 (2000). http://dx.doi.org/10.1364/OE.6.000049 [Crossref]

  • [17] M.A. Franceschini, E. Gratton, and S. Fantini, “Noninvasive measurement of neuronal activity with near-infrared optical imaging”, Neuroimage 21, 372–386 (2004). http://dx.doi.org/10.1016/j.neuroimage.2003.09.040 [Crossref]

  • [18] R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wave-length multichannel time-resolved reflectance”, Appl. Opt. 38, 3670–3680 (1999). http://dx.doi.org/10.1364/AO.38.003670 [Crossref]

  • [19] A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699 (2004). http://dx.doi.org/10.1088/0031-9155/49/5/003 [Crossref]

  • [20] D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain”, IEEE T. Instrum. Meas. 55, 85–90 (2006). http://dx.doi.org/10.1109/TIM.2005.861502 [Crossref]

  • [21] D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Design and characterization of a fast 16-source 64-detector time-resolved system for functional NIR studies”, Proc. SPIE 5859, 116–123 (2005).

  • [22] M.F. Bear, B.W. Connors, and M.A. Paradiso, Neuroscience: Exploring the Brain, Williams & Wilkins, USA 1996.

  • [23] C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, M.S. McAdams, and B.J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer”, J. Opt. Soc. Am. A11, 2727–2741 (1994). http://dx.doi.org/10.1364/JOSAA.11.002727 [Crossref]

  • [24] Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media”, Phys. Med. Biol. 42, 1009–1023 (1997). http://dx.doi.org/10.1088/0031-9155/42/6/002 [Crossref]

  • [25] V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study”, J. Biomed. Opt. 10, 011012 (2005). [Crossref]

  • [26] S. Prahl, Oregon Medical Laser Centre website (2001), http://omlc.ogi.edu/spectra.

  • [27] M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications”, J. Biomed. Opt. 12, 062104 (2007). [Web of Science]

  • [28] H. Wabnitz, M. Moller, A. Walter, and R. Macdonald, “Depth-selective analysis of responses to functional stimulation recorded with a time-domain NIR brain imager”, in Biomedical Optics Topical Meeting, p. ME34, Optical Society of America, Washington, DC, Fort Lauderdale, Florida, USA, 2006.

  • [29] M. Kacprzak, R. Maniewski, and A. Liebert, “Time-resolved optical imager for assessment of cerebral oxygenation”, J. Biomed. Opt. 12, 034019 (2007). [Web of Science] [Crossref]

  • [30] Y. Yamashita, D. Yamashita, T. Yamanaka, T. Suzuki, E. Ohmae, Y. Veda, and M. Oda, “Time-resolved spectroscopy system for tissue monitoring and imaging”, OSA Biomedical Optics Topical Meeting 2004, WD3 (2004).

  • [31] E. Ohmae, R. Kitahara, S. Sareth, H. Yamada, K. Gekko, and K. Akasaka, “Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements”, Neuroimage 29, 697–705 (2006). http://dx.doi.org/10.1016/j.neuroimage.2005.08.008 [Crossref]

  • [32] K. Sakatani, D. Yamashita, T. Yamanaka, M. Oda, Y. Yamashita, T. Hoshino, N. Fujiwara, Y. Murata, and Y. Katayama, “Changes of cerebral blood oxygenation and optical pathlength during activation and deactivation in the prefrontal cortex measured by time-resolved near infrared spectroscopy”, Life Sci. 78, 2734–2741 (2005). http://dx.doi.org/10.1016/j.lfs.2005.10.045 [Crossref]

  • [33] J. Selb, D.K. Joseph, and D.A. Boas, “Time-gated optical system for depth-resolved functional brain imaging”, J. Biomed. Opt. 11, 044008 (2006). [Crossref]

  • [34] A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber”, Opt. Lett. 29, 2405–2407 (2004). http://dx.doi.org/10.1364/OL.29.002405 [Crossref]

  • [35] www.hamamatsuphotonics.it.

  • [36] www.fianium.it.

  • [37] A. Leon-Saval, T.A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance”, Opt. Lett. 30, 2545–2527 (2005). http://dx.doi.org/10.1364/OL.30.002545 [Crossref]

  • [38] F. Zappa, S. Tisa, A. Gulinatti, A. Gallivanoni, and S. Cova, “Complete single-photon counting and timing module in a microchip”, Opt. Lett. 30, 1327–1329 (2005). http://dx.doi.org/10.1364/OL.30.001327 [Crossref]

Published Online: 2008-03-26

Published in Print: 2008-06-01

Citation Information: Opto-Electronics Review. Volume 16, Issue 2, Pages 131–135, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-008-0011-6, March 2008

© 2008 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, and G. Somesfalean
Applied Physics B, 2012, Volume 109, Number 3, Page 467
Ludovico Minati, Elisa Visani, Nick G. Dowell, Nick Medford, and Hugo D. Critchley
Journal of Medical Engineering & Technology, 2011, Volume 35, Number 6-7, Page 370
Judit Gervain, Jacques Mehler, Janet F. Werker, Charles A. Nelson, Gergely Csibra, Sarah Lloyd-Fox, Mohinish Shukla, and Richard N. Aslin
Developmental Cognitive Neuroscience, 2011, Volume 1, Number 1, Page 22
Dmitry Yudovsky and Laurent Pilon
Journal of Biophotonics, 2011, Volume 4, Number 5, Page 305
Rebecca Re, Davide Contini, Matteo Caffini, Rinaldo Cubeddu, Lorenzo Spinelli, and Alessandro Torricelli
Review of Scientific Instruments, 2010, Volume 81, Number 11, Page 113101

Comments (0)

Please log in or register to comment.