Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 16, Issue 2

Issues

Monte Carlo simulation of light propagation in adult brain: influence of tissue blood content and indocyanine green

P. Niederer
  • Institute of Biomedical Engineering, University and Swiss Federal Institute of Technology, Gloriastrasse 35, CH-8092, Zurich, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Mudra
  • Institute of Biomedical Engineering, University and Swiss Federal Institute of Technology, Gloriastrasse 35, CH-8092, Zurich, Switzerland
  • Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, CH-8091, Zurich, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. Keller
Published Online: 2008-03-26 | DOI: https://doi.org/10.2478/s11772-008-0012-5

Abstract

Near-infrared spectroscopy (NIRS), applied to a human head, is a noninvasive method in neurointensive care to monitor cerebral hemodynamics and oxygenation. The method is particularly powerful when it is applied in combination with indocyanine green (ICG) as a tracer substance. In order to assess contributions to the measured optical density (OD) which are due to extracerebral circulation and disturb the clinically significant intracerebral signals, we simulated the light propagation in an anatomically representative model of the adult head derived from MRI measurements with the aid of Monte Carlo methods. Since the measured OD signal depends largely on the relative blood content in various transilluminated tissues, we weighted the calculated densities of the photon distribution under baseline conditions within the tissues with the changes and aberrations of the relative blood volumes which we expect to prevail under physiological conditions. Furthermore, the influence of the IGC dye as a tracer substance was assessed. We conclude that up to about different 70% of the measured OD signal may have its origin in the tissues of interest under optimal conditions, which is mainly due to the extrapolated high relative blood content of brain tissue along with the influence of ICG.

Keywords: near infrared spectroscopy; neurointensive care; Monte Carlo method; indocyanine green; tissue optics

  • [1] F.F. Joebsis, “Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters”, Science 189, 1264–1267 (1977). http://dx.doi.org/10.1126/science.929199CrossrefGoogle Scholar

  • [2] E. Keller, A. Nadler, H. Alkadhi, S.S. Kollias, Y. Yonekawa, and P. Niederer, “Noninvasive measurement of regional cerebral blood flow and regional blood volume by near-infrared spectroscopy and indocyanine green dye dilution”, Neuroimage 20, 828–839 (2003). http://dx.doi.org/10.1016/S1053-8119(03)00315-XCrossrefGoogle Scholar

  • [3] A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain’, Neuroimage 31, 600–608 (2006). http://dx.doi.org/10.1016/j.neuroimage.2005.12.046CrossrefGoogle Scholar

  • [4] P.W. McCormick, M. Stewart, G. Lewis, M. Dujovny, and J.I. Ausman, “Intracerebral penetration of infrared light”, J. Neurosurg. 76, 315–318 (1992). http://dx.doi.org/10.3171/jns.1992.76.2.0315CrossrefGoogle Scholar

  • [5] S. Hongo, K. Kobayashi, H. Okudera, M. Hokama, and F. Nakagawa, “Noninvasive cerebral optical spectroscopy: Depth-resolved measurements of cerebral hemodynamics using indocyanine green”, Neurol. Res. 17, 89–93 (1995). Google Scholar

  • [6] H. Owen-Reece, C.E. Elwell, J.S. Wyatt, and D.T. Delpy, “The efect of scalp ischemia on measurement of cerebral blood volume by near-infrared spectroscopy”, Physiol. Meas. 17, 279–286 (1996). http://dx.doi.org/10.1088/0967-3334/17/4/005CrossrefGoogle Scholar

  • [7] P. Hopton, T.S. Walsh, and A. Lee, “Measurement of cerebral blood volume using near-infrared spectroscopy and indocyanine green elimination”, J. Appl. Physiol. 87, 1981–1987 (1999). Google Scholar

  • [8] T.J. Germon, P.D. Evans, N.J. Barnett, P. Wall, A.R. Manara, and R.J. Nelson, “Cerebral near infrared spectroscopy: Emitter-detector separation must be increased”, Brit. J. Anaesth. 82, 831–837 (1999). CrossrefGoogle Scholar

  • [9] M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H.U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom”, Phys. Med. Biol. 44, 1743–1753 (1999). http://dx.doi.org/10.1088/0031-9155/44/7/313CrossrefGoogle Scholar

  • [10] S.J. Matcher, C.E. Elwell, C.E. Cooper, D.T. Cope, and M. Delpy, “Absolute quantification methods in tissue”, Proc. SPIE 2389, 486–495 (1995). http://dx.doi.org/10.1117/12.209997CrossrefGoogle Scholar

  • [11] S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy”, Pediatr. Res. 58, 568–573 (2005). http://dx.doi.org/10.1203/01.PDR.0000175638.98041.0ECrossrefGoogle Scholar

  • [12] V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: A multichannel time-resolved near-infrared topography study”, J. Biomed. Opt. 10, 011012 (2005). CrossrefGoogle Scholar

  • [13] M. Wolf, U. Wolf, J.H. Choi, R. Gupta, L.P. Safonova, L.A. Paunescu, A. Michalos, and E. Gratton, “Detection of the fast neuronal signal on the motor cortex using functional frequency domain near infrared spectroscopy” Adv. Exp. Med. Biol. 510, 193–197 (2003). Google Scholar

  • [14] M. Kohl-Bareis, H. Obrig, J. Steinbrink, K. Malak, K. Uludag, and A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: Separation of brain from skin and skull signals”, J. Biomed. Opt. 7, 464–470 (2002). http://dx.doi.org/10.1117/1.1482719CrossrefGoogle Scholar

  • [15] J. Steinbrink, T. Fischer, H. Kuppe, R. Hetzer, K. Uludag, H. Obrig, W.M. Kuebler, and M. Wolfgang, “Relevance of depth resolution for cerebral blood flow monitoring by near-infrared spectroscopic bolus tracking during cardiopulmonary bypass”, J. Thorac. Cardiov. Sur. 132, 1172–1178 (2006). http://dx.doi.org/10.1016/j.jtcvs.2006.05.065CrossrefGoogle Scholar

  • [16] A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance”, Neuroimage 24, 426–435 (2005). http://dx.doi.org/10.1016/j.neuroimage.2004.08.046CrossrefGoogle Scholar

  • [17] F.F.M. de Mul, W. Steenbergen, and J. Greve, “Doppler Monte Carlo simulations of light scattering in tissue to support laser-Doppler perfusion measurements”, Technol. Health Care 7, 171–183 (1999). Google Scholar

  • [18] M. Firbank, S.R. Arridge, M. Schweiger, and D.T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions”, Phys. Med. Biol. 41, 767–783 (1996). http://dx.doi.org/10.1088/0031-9155/41/4/012CrossrefGoogle Scholar

  • [19] E. Okada, and D.T. Delpy, “Efects of scattering of arachnoid trabeculae on light propagation in the adult brain”, Proc. OSA Biomedical Topical Meeting, 256–258 (2000). Google Scholar

  • [20] T. Hayashi, Y. Kashio, and E. Okada, “Hybrid Monte Carlo-difusion method for light propagation in three dimensional models with low scattering layer”, Proc. OSA Biomedical Topical Meeting, 116–118 (2001). Google Scholar

  • [21] M. Watanabe, K. Honjo, K. Yokoyama, and E. Okada, “Monte Carlo analysis of light propagation in the exposed brain in the wavelength range of 400–950 nm”, Proc. OSA Biomedical Topical Meeting, 158–160 (2001). Google Scholar

  • [22] E. Okada, M. Firbank, and D.T. Delpy, “The efect of overlying tissue on the spatial sensitivity profle of near-infrared spectroscopy”, Phys. Med. Biol. 40, 2093–2108 (1995). http://dx.doi.org/10.1088/0031-9155/40/12/007CrossrefGoogle Scholar

  • [23] E. Okada, M. Firbank, M. Schweiger, S.R. Arridge, and D.T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head”, Appl. Opt. 36, 21–31 (1997). http://dx.doi.org/10.1364/AO.36.000021CrossrefGoogle Scholar

  • [24] J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head”, Phys. Med. Biol. 46, 879–896 (2001). http://dx.doi.org/10.1088/0031-9155/46/3/320CrossrefGoogle Scholar

  • [25] M. Firbank, E. Okada, and D.T. Delpy, “A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses”, Neuroimage 8, 69–78 (1998). http://dx.doi.org/10.1006/nimg.1998.0348CrossrefGoogle Scholar

  • [26] Y. Fukui, Y. Ajichi, and E. Okada, “Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models”, Appl. Opt. 42, 2881–2887 (2003). http://dx.doi.org/10.1364/AO.42.002881CrossrefGoogle Scholar

  • [27] D.A. Boas, J.P. Culver, J.J. Stott, and A.K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head”, Opt. Express 10, 159–170 (2002). CrossrefGoogle Scholar

  • [28] G. Strangman, M.A. Franceschini, and D.A. Boas, “Factors afecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters”, Neuroimage 18, 865–879 (2003). http://dx.doi.org/10.1016/S1053-8119(03)00021-1CrossrefGoogle Scholar

  • [29] H.H. Schmidek, L.M. Auer, and J.P. Kapp, “The cerebral venous system”, Neurosurgery 17, 663–678 (1985). http://dx.doi.org/10.1097/00006123-198510000-00024CrossrefGoogle Scholar

  • [30] M. Wolf, G. Duc, M. Keel, P. Niederer, K. von Siebenthal, and H.U. Bucher, “Continuous noninvasive measurement of cerebral arterial and venous oxygen saturation at the bedside in mechanically ventilated neonates”, Crit. Care. Med. 25, 1579–1582 (1997). http://dx.doi.org/10.1097/00003246-199709000-00028CrossrefGoogle Scholar

  • [31] H. Ito, I. Kanno, C. Kato, T. Sasaki, K. Ishii, Y. Ouchi, A. Lida, H. Okazawa, K. Hayashida, N. Tsuyuguchi, K. Ishii, Y. Kuwabra, and M. Senda, “Database of normal human cerebral blood fow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labeled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan”, Eur. J. Nucl. Med. Mol. I. 31, 635–643 (2004). http://dx.doi.org/10.1007/s00259-003-1430-8CrossrefGoogle Scholar

  • [32] H. Ito, M. Ibaraki, I. Kanno, H. Fukuda, and S. Miura, “Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography”, J. Cereb. Blood F. Met. 25, 852–857 (2005). http://dx.doi.org/10.1038/sj.jcbfm.9600076CrossrefGoogle Scholar

  • [33] T.W. Wilson, J.K. Shoemaker, R. Kozak, T.Y. Lee, and A.W. Gelb, “Reflex-mediated reduction in human cerebral blood volume”, J. Cereb. Blood F. Met. 25, 136–143 (2005). http://dx.doi.org/10.1038/sj.jcbfm.9600015CrossrefGoogle Scholar

  • [34] S.T. Francis, J.A. Pears, S. Butterworth, R.W. Bowtell, and P.A. Gowland, “Measuring the change in CBV upon cortical activation with high temporal resolution using look-locker EPI and Gd-DTPA”, Magn. Reson. Med. 50, 483–492 (2003). http://dx.doi.org/10.1002/mrm.10547CrossrefGoogle Scholar

  • [35] A.S. Prahl, M. Keijzer, S.L. Jacques, and A.J. Welch, “A Monte Carlo Model of light propagation in tissue”, SPIE Institute Series IS5, 102–111 (1989). Google Scholar

  • [36] P. Vander Zee, M. Cope, S.R. Arridge, M. Essenpreis, L.A. Potter, J. Edwards, A.D. Wyatt, S.C. McCormick, S.C. Roth, and E.O. Reynolds, “Experimentally measured optical path lengths for the adult head, calf and forearm and the head of the newborn infant as a function of interoptode spacing”, Adv. Exp. Med. Biol. 316, 143–153 (1992). Google Scholar

  • [37] P. Vander Zee, M. Essenpreis, and D.T. Deply, “Optical properties of brain tissue”, Proc. SPIE 1888, 454–456 (1993). http://dx.doi.org/10.1117/12.154665CrossrefGoogle Scholar

  • [38] K.L. Leenders, D. Perani, A.A. Lammertsma, J.D. Heather, P. Buckingham, M.J.R. Healy, J.M. Gibbs, R.J.S. Wise, J. Hatazawa, S. Herold, R.P. Beaney, D.J. Brooks, T. Spinks, C. Rodes, R.S.J. Frackowiak, and T. Jones, “Cerebral blood flow, blood volume and oxygen utilization normal values and effect of age”, Brain 113, 27–47 (1990). http://dx.doi.org/10.1093/brain/113.1.27CrossrefGoogle Scholar

  • [39] X. Xu, P. Tikuisis, and G. Giesbrecht, “A mathematical model for human brain cooling during cold-water near-drowning”, J. Appl. Physiol. 86, 265–272 (1999). Google Scholar

  • [40] L. Zhu and C. Diao, “Theoretical simulation of temperature distribution in the brain during mild hypothermia treatment for brain injury”, Med. Biol. Eng. Comput. 39, 681–687 (2001). http://dx.doi.org/10.1007/BF02345442CrossrefGoogle Scholar

About the article

Published Online: 2008-03-26

Published in Print: 2008-06-01


Citation Information: Opto-Electronics Review, Volume 16, Issue 2, Pages 124–130, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-008-0012-5.

Export Citation

© 2008 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in