Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 16, Issue 4


Compression evaluation of surgery video recordings retaining diagnostic credibility (compression evaluation of surgery video)

M. Duplaga / M. Leszczuk
  • Department of Telecommunications, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-668, Cracow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Z. Papir
  • Department of Telecommunications, AGH University of Science and Technology, 30 Mickiewicza Ave., 30-668, Cracow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Przelaskowski
Published Online: 2008-09-27 | DOI: https://doi.org/10.2478/s11772-008-0041-0


Wider dissemination of medical digital video libraries is affected by two correlated factors, resource effective content compression that directly influences its diagnostic credibility. It has been proved that it is possible to meet these contradictory requirements halfway for long-lasting and low motion surgery recordings at compression ratios close to 100 (bronchoscopic procedures were a case study investigated). As the main supporting assumption, it has been accepted that the content can be compressed as far as clinicians are not able to sense a loss of video diagnostic fidelity (a visually lossless compression).

Different market codecs were inspected by means of the combined subjective and objective tests toward their usability in medical video libraries. Subjective tests involved a panel of clinicians who had to classify compressed bronchoscopic video content according to its quality under the bubble sort algorithm. For objective tests, two metrics (hybrid vector measure and hosaka Plots) were calculated frame by frame and averaged over a whole sequence.

Keywords: video; multimedia; video compression; quality evaluation; bronchoscopy

  • [1] S.T.C. Wong, and D. Tjandra, “A digital library for biomedical imaging on the Internet”, IEEE Commun. Mag. 37, 84–91 (1999). http://dx.doi.org/10.1109/35.739310CrossrefGoogle Scholar

  • [2] R. Tadeusiewicz and M.R. Ogiela, Medical image understanding technology. Artificial intelligence and soft-computing for image understanding, Springer-Verlag, Berlin, 2004. Google Scholar

  • [3] H. Miron, and E.Z. Blumenthal, “Bridging analog and digital video in the surgical setting”, J. Cataract. Refr. Surg. 29, 1874–1877 (2003). http://dx.doi.org/10.1016/S0886-3350(03)00252-9CrossrefGoogle Scholar

  • [4] N.M. Hamilton, I. Frade, P. Duguid, J. Furnace, and A.D. Kindley, “Digital video for networked CAL delivery”, J. Audiov. Media. Med. 18, 59–63 (1995). Google Scholar

  • [5] S.A. Kumar, and H. Pal, “Digital video recording of cardiac surgical procedures”, Ann. Thorac. Surg. 77, 1063–1065 (2004). http://dx.doi.org/10.1016/S0003-4975(03)01258-XCrossrefGoogle Scholar

  • [6] P.A. Reynolds, and R. Mason, “On-line video media for continuing professional development in dentistry”, Comput. Educ. 39, 65–98 (2002). http://dx.doi.org/10.1016/S0360-1315(02)00026-XCrossrefGoogle Scholar

  • [7] S.M. Green, D. Voegeli, M. Harrison, J. Phillips, J. Knowles, M. Weaver, and K. Shephard, “Evaluating the use of streaming video to support student learning in a first-year life sciences course for student nurses”, Nurs. Educ. Today 23, 255–261 (2003). http://dx.doi.org/10.1016/S0260-6917(03)00014-5CrossrefGoogle Scholar

  • [8] C.D. Wright, Digital Library Technology Trends, Sun Microsystems Inc., 2002. Google Scholar

  • [9] P.S. Greene, “Streaming video for the annals Internet readers”, Ann. Thorac. Surg. 77, 1063–1065 (2004). http://dx.doi.org/10.1016/S0003-4975(03)01258-XCrossrefGoogle Scholar

  • [10] J. Strom, “Overcoming barriers for teaching and learning”, in Proc. Int. Symp. Educational Conferencing, Banff, 2002. Google Scholar

  • [11] R.M. Lavitan, T.S. Goldman, D.A. Bryan, F. Shofer, and A. Harlich, “Training with video imaging improves the initial intubation success rates of paramedic trainees in an operating room setting”, Ann. Emerg. Med. 37, 46–50 (2001). http://dx.doi.org/10.1067/mem.2001.111516CrossrefGoogle Scholar

  • [12] J. Leung, G. D’Onofrio, B. Duncan, R. Trepp, N. Vasques, and J. Schriver, “Apply streaming audio and video technology to enhance emergency physician education”, Acad. Emerg. Med. 9, 1059 (2002). http://dx.doi.org/10.1197/aemj.9.10.1059CrossrefGoogle Scholar

  • [13] J.M. Wiecha, R. Gramling, P. Joachim, and H. Vanderschmidt, “Collaborative e-learning using streaming video and asynchronous discussion boards to teach the cognitive foundation of medical interviewing: A case study”, J. Med. Internet Res. 5, 13 (2003). http://dx.doi.org/10.2196/jmir.5.2.e13CrossrefGoogle Scholar

  • [14] A. Gandsas, K. McIntire, G. Palli, and A. Park, “Live streaming video for medical education: a laboratory model”, J. Laparoendosc. Adv. A12, 377–382 (2002). http://dx.doi.org/10.1089/109264202320884135CrossrefGoogle Scholar

  • [15] M. Leszczuk, “Accessing digital video libraries from mobile terminals in 3G networks”, in Proc. Advanced Technologies, Applications and Market Strategies for 3G ATAMS’2001, pp. 164–171, Kraków, 2001. Google Scholar

  • [16] A. Przelaskowski, Wavelet-based Image Data Compression (Falkowe metody kompresji danych obrazowych), Publishing House of the Warsaw University of Technology (Oficyna Wydawnicza PW), pp. 149–190, Warsaw, 2002. Google Scholar

  • [17] C. Dafonte, A. Gomez, A. Castro, and B. Arcay, “Scientific papers: a proposal for improving ICU assistance through intelligent monitoring and supervision”, Technol. Health. Care 10, 464–466, 2002. Google Scholar

  • [18] Rubis Project, Healthcare Telematics Projects, Rubis Project Final Report, pp. 17–19, Rubis Project, 2001. Google Scholar

  • [19] B. Malassagne, D. Mutter, J. Leroy, M. Smith, L. Soler, and J. Marescaux, “Teleeducation in surgery: European Institute for Telesurgery Experience”, World J. Surg. 25, 1490–1494 (2001). Google Scholar

  • [20] J. Rosser, B. Herman, and C. Ehrenwerth, “An overview of video streaming on the Internet and its application to surgical education”, Surg. Endosc. 15, 624–629 (2001). http://dx.doi.org/10.1007/s004640000338CrossrefGoogle Scholar

  • [21] S.A. Zollo, M.G. Kienzle, Z. Henshaw, L.G. Crist, and D.S. Wakefield, “Tele-education in a telemedicine environment: Implications for rural health care and academic medical centres”, J. Med. Syst. 23, 107–122 (1999). http://dx.doi.org/10.1023/A:1020589219289CrossrefGoogle Scholar

  • [22] M.A. Gisondi, S.V. Mahadevan, S.S. Sovndal, and G.H. Gilbert, “19 Emergency department orientation utilizing Web-based streaming video”, Acad. Emerg. Med. 10, 920 (2003). http://dx.doi.org/10.1197/aemj.10.8.920CrossrefGoogle Scholar

  • [23] National Electrical Manufacturers Association, “National Electrical Manufacturers Association. Digital Imaging and Communications in Medicine (DICOM)”, in Digital Imaging and Communications in Medicine (DICOM), National Electrical Manufacturers Association, http://medical.nema.org, 2004. Google Scholar

  • [24] International Organization for Standardization, ISO/IEC 2022:1994: Information technology — Character code structure and extension techniques, pp. 47, International Organization for Standardization, Geneva, 1994. Google Scholar

  • [25] H.J. Lowe, “The new telemedicine paradigm: Using Internet-based multimedia electronic medical record systems to support wide-area clinical care delivery”, in Telemedicine and Telecommunications: Options for the New Century, Bethesda, 2001. Google Scholar

  • [26] M. Cuggia, F. Mougin, and P. Le Beux, “Indexing method of digital audiovisual medical resources with semantic Web integration”, Int. J. Med. Inform. 74, 169–177 (2005). http://dx.doi.org/10.1016/j.ijmedinf.2004.04.027CrossrefGoogle Scholar

  • [27] International Organization for Standardization, ISO/IEC 15444-3:2003: Information technology — JPEG 2000 image coding system — Part 3: Motion JPEG 2000, International Organization for Standardization, Geneva, 2003. Google Scholar

  • [28] ISO/IEC, “MPEG-1 Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s”, ISO/IEC 11172 (1993). Google Scholar

  • [29] ISO/IEC, “Information technology — Generic coding of moving pictures and associated audio information: Video”, ISO/IEC 13818-2 (2002). Google Scholar

  • [30] Ii Recommendation Itu-T, Recommendation ITU-T H.262 (1995 E) i, 1995. Google Scholar

  • [31] ITU-R, “Video coding for low bit rate communication”, Recommendation ITU-R H.263, 01 (2005). Google Scholar

  • [32] W.K.H. Ho, W.K. Cheuk, and D.P.K. Lun, “Content-based scalable H.263 video coding for road traffic monitoring”, IEEE T. Multimedia 7, 615–623, 2005. http://dx.doi.org/10.1109/TMM.2005.850959CrossrefGoogle Scholar

  • [33] ISO/IEC, “Information technology — coding of audio-visual objects — Part 2: Visual”, ISO/IEC 14496-2, 6 (2004). Google Scholar

  • [34] International Organization for Standardization, ISO/IEC 14496-10:2004: Information technology — Coding of audio-visual objects — Part 10: Advanced Video Coding, International Organization for Standardization, Geneva, 2004. Google Scholar

  • [35] ITU-R, “Advanced video coding for generic audiovisual services”, Recommendation ITU-R H.264, 03 (2005). Google Scholar

  • [36] A. Przelaskowski, “Vector quality measure of lossy compressed medical images”, Comput. Biol. Med. 34, 193–207 (2004). http://dx.doi.org/10.1016/S0010-4825(03)00058-1CrossrefGoogle Scholar

  • [37] Multimedia — Compression Algorithms and Standards, edited by W. Skarbek, Akademicka Oficyna Wydawnicza PLJ, 1998. (in Polish) Google Scholar

  • [38] T. Frankewitsch, S. Soehnlein, M. Mueller, and H.U. Prokosch, “Computed quality assessment of MPEG4-compressed DICOM video data”, in Connecting Medical Informatics and Bio-Informatics, Section 7: Imaging Informatics, pp. 447–452, edited by R. Engelbrecht, ENMI, 2005. Google Scholar

  • [39] D.E. Knuth, The Art of Computer Programming Volumes 1–3 Boxed Set, Addison-Wesley Longman Publishing Co., Inc., Boston, 1998. Google Scholar

  • [40] T.H. Cormen, C. Stein, R.L. Rivest, and Ch.E. Leiserson, Introduction to Algorithms, McGraw-Hill Higher Education, 2001. Google Scholar

  • [41] K. Hosaka, “A new picture quality evaluation method”, in Proc. Int. Picture Coding Symp., pp. 17–18, Tokyo, 1986. Google Scholar

  • [42] M. Miyahara, K. Kotani, and V.R. Algazi, “Objective picture quality scale (PQS) for image coding”, IEEE T. Commun. 46, 1215–1226 (1998). http://dx.doi.org/10.1109/26.718563CrossrefGoogle Scholar

About the article

Published Online: 2008-09-27

Published in Print: 2008-12-01

Citation Information: Opto-Electronics Review, Volume 16, Issue 4, Pages 428–438, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-008-0041-0.

Export Citation

© 2008 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in