Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
See all formats and pricing
More options …
Volume 16, Issue 4 (Dec 2008)


External cavity wavelength tunable semiconductor lasers - a review

B. Mroziewicz
Published Online: 2008-09-27 | DOI: https://doi.org/10.2478/s11772-008-0045-9


External cavity tunable lasers have been around for many years and now constitute a large group of semiconductor lasers featuring very unique properties. The present review has been restricted to the systems based on the edge emitting diode lasers set-up in a hybrid configuration. The aim was to make the paper as concise as possible without sacrificing, however, most important details. We start with short description of the fundamentals essential for operation of the external cavity lasers to set the stage for explanation of their properties and some typical designs. Then, semiconductor optical amplifiers used in the external cavity lasers are highlighted more in detail as well as diffraction gratings and other types of wavelength-selective reflectors used to provide optical feedback in these lasers. This is followed by a survey of designs and properties of various external cavity lasers both with mobile bulk gratings and with fixed wavelength selective mirrors. The paper closes with description of some recent developments in the field to show prospects for further progress directed towards miniaturization and integration of the external cavity laser components used so far to set-up hybrid systems.

Keywords: tunable lasers; external cavity; optical amplifiers; wavelength selective mirrors

  • [1] T. Kleine-Ostmann, P. Knobloch, M. Koch, S. Hoffmann, M. Breede, M. Hofmann, G. Hein, K. Pierz, M. Sperling, and K. Donhuijsen, “Continuous-wave THz imaging”, Electron. Lett. 37, 1461–1463 (2001). http://dx.doi.org/10.1049/el:20011003CrossrefGoogle Scholar

  • [2] C.S. Friedrich, C. Brenner, S. Hoffmann, A. Schmitz, I.C. Mayorga, A. Klehr, G. Erbert, and M.R. Hofmann, “New two-colour laser concepts for THz generation”, IEEE J. Sel. Top. Quant. 14, 270–275 (2008). http://dx.doi.org/10.1109/JSTQE.2007.912754CrossrefGoogle Scholar

  • [3] L. Gasman, “Device development will tackle video traffic jam”, Fibre Systems Europe, June, 2007. Google Scholar

  • [4] T. Morikawa, Y. Mitsuhashi, and J. Shimada, “Return-beam induced oscillations in self-coupled semiconductor lasers”, Electron. Lett. 12, 435–436 (1976). http://dx.doi.org/10.1049/el:19760331CrossrefGoogle Scholar

  • [5] V. Jayaraman, Z.M Chuang, and L.A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings”, IEEE J. Quantum Elect. 29, 1824–1834 (1993). http://dx.doi.org/10.1109/3.234440CrossrefGoogle Scholar

  • [6] Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, and Y. Kondo, “Over 100 nm wavelength tuning in superstructure grating (SSG) DBR lasers”, Electron. Lett. 29, 352–354 (1993). http://dx.doi.org/10.1049/el:19930238CrossrefGoogle Scholar

  • [7] J. Hong, H. Kim F. Shepard, C. Rogers, B. Baulcomb, and S. Clements, “Matrix-grating strongly gain-coupled (MG-SGC) DFB lasers with #4-nm continuous wavelength tuning range”, IEEE Photonic. Techn. L. 11, 515–517 (1999). http://dx.doi.org/10.1109/68.759383CrossrefGoogle Scholar

  • [8] P.J. Rigole, S. Nilsson, L. Backbom, B. Stalnacke, E. Berglind, J.P. Weber, and B. Stoltz, “Quasi-continuous tuning range from 1560 to 1520 nm in a GCSR laser, with high power and low tuning currents”, Electron. Lett. 32, 2352–2354 (1996). http://dx.doi.org/10.1049/el:19961540CrossrefGoogle Scholar

  • [9] A. Wicht, M. Rudolf, P. Huke, R.H. Rinkleff, and K. Danzmann, “Grating enhanced external cavity laser”, Appl. Phys. B78, 305–313 (2003). Google Scholar

  • [10] A.D. White, “Reflecting prisms for dispersive optical maser cavities”, Appl. Optics 3, 431–432 (1964). CrossrefGoogle Scholar

  • [11] T.W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy”, Appl. Optics 11, 895–898 (1972). CrossrefGoogle Scholar

  • [12] M.G. Littman, “Single-mode operation of grazing-incidence pulsed dye laser”, Opt. Lett. 3, 138–140 (1978). CrossrefGoogle Scholar

  • [13] L. Ménager, L. Cabaret, I. Lorgeré, and J.L. Le Gouët, “Diode laser extended cavity for broad-range fast ramping”, Opt. Lett. 25, 1246–1248 (2000). http://dx.doi.org/10.1364/OL.25.001246CrossrefGoogle Scholar

  • [14] L. Levin, “Mode-hop-free electro-optically tuned diode laser”, Opt. Lett. 27, 237–239 (2002). http://dx.doi.org/10.1364/OL.27.000237CrossrefGoogle Scholar

  • [15] G.A. Coquin and K.W. Cheung, “Electronically tunable external-cavity semiconductor laser”, Electron. Lett. 24, 599–600 (1988). http://dx.doi.org/10.1049/el:19880406CrossrefGoogle Scholar

  • [16] K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter”, Electron. Lett. 40, 1187–1188 (2004). http://dx.doi.org/10.1049/el:20046089CrossrefGoogle Scholar

  • [17] J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, “Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror”, IEEE Photonic. Techn. L. 17, 681–683 (2005). http://dx.doi.org/10.1109/LPT.2004.842381CrossrefGoogle Scholar

  • [18] T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems”, IEEE Photonic. Techn. L. 14, 1001–1003 (2002). http://dx.doi.org/10.1109/LPT.2002.1012412CrossrefGoogle Scholar

  • [19] V. Crozatier, B.K. Das, G. Baili, G. Gorju, F. Bretenaker, J.L. Le Gouët, I. Lorgeré, and W. Kohler, “Highly coherent electronically tunable waveguide extended cavity diode laser”, IEEE Photonic. Techn. L. 18, 1527–1529 (2006). http://dx.doi.org/10.1109/LPT.2006.877549CrossrefGoogle Scholar

  • [20] I.H. White, K.O. Nyairo, P.A. Kirkby, and C.J. Armistead, “Demonstration of a 1×2 multichannel grating cavity laser for wavelength division multiplexing (WDM) applications”, Electron. Lett. 26, 832–834 (1990). http://dx.doi.org/10.1049/el:19900546CrossrefGoogle Scholar

  • [21] I.H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications”, J. Lightwave Technol. 9, 893–899 (1991). http://dx.doi.org/10.1109/50.85791CrossrefGoogle Scholar

  • [22] J.B.D. Soole, A. Scherer, H.P. LeBlanc, N.C. Andreadakis, R. Bhat, and M.A. Koza, “Monolithic InP/InGaAsP/InP grating spectrometer for the 1.48-1.56 μm wavelength range”, Appl. Phys. Lett. 58, 1949–1951 (1991). http://dx.doi.org/10.1063/1.105028CrossrefGoogle Scholar

  • [23] O.K. Kwon, K.H. Kim, E.D. Sim, J.H. Kim, and K.R. Oh, “Monolithically integrated multiwavelength grating cavity laser”, IEEE Photonic. Techn. L. 17, 1788–1790 (2005). http://dx.doi.org/10.1109/LPT.2005.853009CrossrefGoogle Scholar

  • [24] Y. Arakawa and A. Yariv, “Quantum well lasers-gain, spectra, dynamics”, IEEE J. Quantum Elect. QE-22, 1887–1899 (1986). http://dx.doi.org/10.1109/JQE.1986.1073185CrossrefGoogle Scholar

  • [25] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Elect. QE-16, 347–355 (1980). http://dx.doi.org/10.1109/JQE.1980.1070479CrossrefGoogle Scholar

  • [26] M. Bagley, R. Wyatt, D.J. Elton, H.J. Wickes, P.C. Spurdens, C.P. Seltzer, D.M. Cooper, and W.J. Devlin, “242 nm continuous tuning from a GRIN-SCH-MQW-BH InGaAsP laser in an extended cavity”, Electron. Lett. 26, 267–269 (1990). http://dx.doi.org/10.1049/el:19900178Google Scholar

  • [27] A.S. Arnold, J.S. Wilson, and M.G. Boshier, “A simple extended-cavity diode laser”, Rev. Sci. Instrum. 69, 1236–1239 (1998). http://dx.doi.org/10.1063/1.1148756CrossrefGoogle Scholar

  • [28] K.C. Harvey and C.J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating”, Opt. Lett. 16, 910–912 (1991). http://dx.doi.org/10.1364/OL.16.000910CrossrefGoogle Scholar

  • [29] J.E. Epler, G.S. Jackson, N. Holonyak, Jr., R.L. Thornton, R.D. Burnham, and T.L. Paoli, “Broadband operation of coupled-stripe multiple quantum well AlGaAs laser diodes”, Appl. Phys. Lett. 47, 779–780 (1985). http://dx.doi.org/10.1063/1.96035CrossrefGoogle Scholar

  • [30] D.C. Hall, J.S. Major, Jr., N. Holonyak, Jr., P. Gavrilovic, K. Meehan, W. Stutius, and J.E. Williams, “Broadband long-wavelength operation (9700 Å ≥ λ ≥ 8700 Å) of AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure lasers in an external grating cavity”, Appl. Phys. Lett. 55, 752–754 (1989). http://dx.doi.org/10.1063/1.101796CrossrefGoogle Scholar

  • [31] M. Mittelstein, D. Mehuys, and A. Yariv, “Broadband tunability of gain-flattened quantum well semiconductor lasers with an external grating”, Appl. Phys. Lett. 54, 1092–1094 (1989). http://dx.doi.org/10.1063/1.100767CrossrefGoogle Scholar

  • [32] A. Lidgard, T. Tanbun-Ek, R.A. Logan, H. Temkin, K.W. Wecht, and N.A. Olsson, “External-cavity InGaAs/InP graded index multiquantum well laser with a 200 nm tuning range”, Appl. Phys. Lett. 56, 816–817 (1990). http://dx.doi.org/10.1063/1.102672CrossrefGoogle Scholar

  • [33] C.P. Seltzer, M. Bagley, D.J. Elton, S. Perrin, and D.M Cooper, “160-nm continuous tuning of an MQW laser in the external cavity across the entire 1.3 μm communications window”, Electron. Lett. 27, 95–96 (1991). http://dx.doi.org/10.1049/el:19910060CrossrefGoogle Scholar

  • [34] J.N. Walpole, E.S. Kintzer, S.R. Chinn, C.A. Wang, and L.J. Missaggia, “High-power strained-layer InGaAs/AlGaAs tapered travelling wave amplifier”, Appl. Phys. Lett. 61, 740–742 (1992). http://dx.doi.org/10.1063/1.107783CrossrefGoogle Scholar

  • [35] C.F. Lin, Y.S. Su, and B.R. Wu, “External-cavity semiconductor laser tunable from 1.3 to 1.54 μm for optical communication”, IEEE Photonic. Tech. L. 14, 3–5 (2002). http://dx.doi.org/10.1109/68.974142CrossrefGoogle Scholar

  • [36] H.S. Gingrich, D.R. Chumney, S.Z. Sun, S.D. Hersee, L.F. Lester, and S.R.J. Brueck, “Broadly tunable external cavity laser diodes with staggered thickness multiple quantum wells”, IEEE Photonic. Techn. L. 9, 155–157 (1997). http://dx.doi.org/10.1109/68.553070CrossrefGoogle Scholar

  • [37] L. Goldberg, D. Mehuys, and D.C. Hall, “3.3 W CW diffraction limited broad area semiconductor amplifier”, Electron. Lett. 28, 1082–1084 (1992). http://dx.doi.org/10.1049/el:19920684CrossrefGoogle Scholar

  • [38] D. Mehuys, D. Welsh, and D. Scigres, “1 W CW, diffraction-limited, tunable external-cavity semiconductor laser”, Electron. Lett. 29, 1254–1255 (1993). http://dx.doi.org/10.1049/el:19930838CrossrefGoogle Scholar

  • [39] D. Wandt, M. Laschek, K. Przyklenk, A. Tünnermann, and H. Welling, “Continously tunable 0.5 W single-frequency diode laser source”, Opt. Commun. 148, 261–264 (1998). http://dx.doi.org/10.1016/S0030-4018(97)00696-2CrossrefGoogle Scholar

  • [40] S. Stry, L. Hildebrandt, J. Sacher, Ch. Buggle, M. Kemmann, and W. von Klitzing “Compact tunable diode laser with diffraction limited 1 Watt for atom cooling and trapping”, e-mail: sandra.stry@sacher-laser.com Google Scholar

  • [41] R.J. Jones, S. Gupta, R.K. Jain, and J.N. Walpole, “Near-diffraction-limited high power (∼1 W) single longitudinal mode CW diode laser tunable from 960 to 980 nm”, Electron. Lett. 31, 1668–1669 (1995). http://dx.doi.org/10.1049/el:19951147CrossrefGoogle Scholar

  • [42] M. Notomi, O. Mitomi, Y. Yoshikuni, F. Kano, and Y. Tohmori, “Broad-band tunable two-section laser diode with external grating feedback”, IEEE Photonic. Techn. L. 2, 85–87 (1990). http://dx.doi.org/10.1109/68.47055CrossrefGoogle Scholar

  • [43] J. De Merlier, K. Mizutani, S. Sudo, K. Sato, and K. Kudo, “Wavelength channel accuracy of an external cavity wavelength tunable laser with intracavity wavelength reference etalon”, J. Lightwave Technol. 24, 3202–3209 (2006). http://dx.doi.org/10.1109/JLT.2006.876338CrossrefGoogle Scholar

  • [44] A. Lohman, and R.R.A. Syms, “External cavity laser with a vertically etched silicon blazed grating”, IEEE Photonic. Techn. L. 15, 120–122 (2003). http://dx.doi.org/10.1109/LPT.2002.805762CrossrefGoogle Scholar

  • [45] E.G. Loewen, M. Neviere, and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings”, Appl. Optics 16, 2711–2721 (1977). CrossrefGoogle Scholar

  • [46] R.R.A. Syms, A. Lohman, “MOEMS tuning element for a littrow external cavity laser”, J. Microelectromech. Syst. 12, 921–928 (2003). http://dx.doi.org/10.1109/JMEMS.2003.820269CrossrefGoogle Scholar

  • [47] M.C. Hutley, Diffraction Gratings, Academic Press Ltd., London, 1990. Google Scholar

  • [48] B. Mroziewicz, T. Piwoński, E. Kowalczyk, A. Szerling, and S.J. Lewandowski, “External cavity diode lasers with ridge-waveguide type broad contact semiconductor optical amplifiers”, Proc. SPIE 5958, J1–J8 (2005). Google Scholar

  • [49] B. Mroziewicz, E. Kowalczyk, L. Dobrzański, J. Ratajczak, and S.J. Lewandowski, “External cavity diode lasers with E-beam written silicon diffraction gratings”, Opt. Quant. Electron. 39, 585–595 (2007). http://dx.doi.org/10.1007/s11082-007-9111-7CrossrefGoogle Scholar

  • [50] D. Rosenblatt, A. Sharon, and A.A. Friesem, “Resonant grating waveguide structures”, IEEE J. Quantum Elect. 33, 2038–2059 (1997). http://dx.doi.org/10.1109/3.641320CrossrefGoogle Scholar

  • [51] A.S.P. Chang, H. Tan, S. Bai, W. Wu, Z. Yu, and S.Y. Chou, “Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror”, IEEE Photonic. Techn. L. 19, 1099–1101 (2007). http://dx.doi.org/10.1109/LPT.2007.899437CrossrefGoogle Scholar

  • [52] S. Block, E. Gamet, and F. Pigeon, “Semiconductor laser with external resonant grating mirror”, IEEE J. Quantum Elect. 41, 1049–1053 (2005). http://dx.doi.org/10.1109/JQE.2005.851248CrossrefGoogle Scholar

  • [53] S.Y. Chou, P.R. Krauss, and P.J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett. 67, 3114–3116 (1995). http://dx.doi.org/10.1063/1.114851CrossrefGoogle Scholar

  • [54] I. Avrutsky and R. Rabady, “Waveguide grating mirror for large-area semiconductor lasers”, Opt. Lett. 26, 989–991 (2001). http://dx.doi.org/10.1364/OL.26.000989CrossrefGoogle Scholar

  • [55] S.S. Wang and R. Magnusson, “Multilayer waveguide-grating filters”, Appl. Optics 34, 2414–2420 (1995). http://dx.doi.org/10.1364/AO.34.002414CrossrefGoogle Scholar

  • [56] M.G. Littman and H.J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander”, Appl. Optics 17, 2224–2227 (1978). CrossrefGoogle Scholar

  • [57] P. McNicholl and H.J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings”, Appl. Optics 24, 2757–2761 (1985). CrossrefGoogle Scholar

  • [58] F. Favre, D. Le Guen, J.C. Simon, and B. Landousies, “External-cavity semiconductor laser with 15 nm continuous tuning range”, Electron. Lett. 22, 795–796 (1986). http://dx.doi.org/10.1049/el:19860545CrossrefGoogle Scholar

  • [59] F. Favre and D. Le Guen, “82 nm of continuous tunability for an external cavity semiconductor laser”, Electron. Lett. 27, 183–184 (1991). http://dx.doi.org/10.1049/el:19910117CrossrefGoogle Scholar

  • [60] H. Tabuchi and H. Ishikawa, “External grating tunable MWQ laser with wide tuning range of 240 nm”, Electron. Lett. 26, 742–743 (1990). http://dx.doi.org/10.1049/el:19900484CrossrefGoogle Scholar

  • [61] D. Wandt, M. Laschek, K. Przyklenk, A. Tunnermann, and H. Welling, “External cavity laser diode with 40 nm continuous tuning range around 825 nm”, Optics Commun. 130, 81–84 (1996). http://dx.doi.org/10.1016/0030-4018(96)00171-XGoogle Scholar

  • [62] K. Liu and M.G. Littman, “Novel geometry for single-mode scanning of tunable lasers”, Opt. Lett. 6, 117–118 (1981). CrossrefGoogle Scholar

  • [63] L. Nilse, H.J. Davies, and C.S. Adams, “Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point”, Appl. Optics 38, 548–553 (1999). http://dx.doi.org/10.1364/AO.38.000548CrossrefGoogle Scholar

  • [64] M. de Labachelerie and G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers”, Appl. Optics 32, 269–274 (1993) Google Scholar

  • [65] W.R. Trutna and L.F. Stokes, “Continuously tuned external cavity semiconductor laser”, J. Lightwave Technol. 11, 1279–1286 (1993). http://dx.doi.org/10.1109/50.254086CrossrefGoogle Scholar

  • [66] T.M. Hard, “Laser wavelength selection and output coupling by a grating”, Appl. Optics 9, 1825–1830 (1990). Google Scholar

  • [67] C.J. Hawthorn, K.P. Weber, and R.E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam”, Rev. Sci. Instrum. 72, 4477–4479 (2001). http://dx.doi.org/10.1063/1.1419217CrossrefGoogle Scholar

  • [68] D. Wandt, M. Laschek, A. Tunnermann, and H. Welling, “Continuously tunable external-cavity diode laser with a double-grating arrangement”, Opt. Lett. 22, 390–392 (1997). http://dx.doi.org/10.1364/OL.22.000390CrossrefGoogle Scholar

  • [69] J.H. Lee, M.Y. Park, Ch.Y. Kim, S.H. Cho, W. Lee, G. Jeong, and B.W. Kim, “Tunable external cavity laser based on polymer waveguide platform for WDM access network”, IEEE Photonic. Techn. L. 17, 1529–1956 (2005). Google Scholar

  • [70] M.C. Oh, H.J. Lee, M.H. Lee, J.H. Ahn, S.G. Han, and H.G. Kim, “Tunable wavelength filters with Bragg gratings in polymer waveguides”, Appl. Phys. Lett. 73, 2543–2545 (1998). http://dx.doi.org/10.1063/1.122527CrossrefGoogle Scholar

  • [71] A. Andalkar, S.K. Lamoreaux, and R.B. Warrington, “Improved external cavity design for cesium D1 (894 nm) diode laser”, Rev. Sci. Instrum. 71, 4029–4031 (2000). http://dx.doi.org/10.1063/1.1319860CrossrefGoogle Scholar

  • [72] L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, and F. Schael, “Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy”, Appl. Optics 42, 2110–2118 (2003). http://dx.doi.org/10.1364/AO.42.002110CrossrefGoogle Scholar

  • [73] D.J. Lonsdale, A.P. Willis, and T.A. King, “Extended tuning and single-mode operation of an anti-reflection-coated InGaN violet laser diode in a Littrow cavity”, Meas. Sci. Technol. 13, 488–493 (2002). Google Scholar

  • [74] R. Wyatt and W.J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range”, Electron. Lett. 19, 110–112 (1983). http://dx.doi.org/10.1049/el:19830079CrossrefGoogle Scholar

  • [75] R. Wyatt, “Spectral linewidth of external cavity semiconductor lasers with strong, frequency-selective feedback”, Electron. Lett. 21, 658–659 (1985). http://dx.doi.org/10.1049/el:19850467CrossrefGoogle Scholar

  • [76] J. Mellis, S.A. Al-Chalabi, K.H. Cameron, R. Wyatt, J.C. Regnault, W.J. Devlin, and M.C. Brain, “Miniature packaged external-cavity semiconductor laser with 50 GHz continuous electrical tuning range”, Electron. Lett. 24, 988–989 (1988). http://dx.doi.org/10.1049/el:19880672CrossrefGoogle Scholar

  • [77] A.T. Schremer and C.L. Tang, “External-cavity semiconductor laser with 1000 GHz continuous piezoelectric tuning range”, IEEE Photonic. Techn. L. 2, 3.5 (1990). Google Scholar

  • [78] C. Petridis, I.D. Lindsay, D.J.M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating”, Rev. Sci. Instrum. 72, 3811–3815 (2001). http://dx.doi.org/10.1063/1.1405783CrossrefGoogle Scholar

  • [79] E. Ip, J.M. Kahn, D. Anthon, and J. Hutchins, “Linewidth measurements of MEMS-based tunable lasers for phase-locking applications”, IEEE Photonic. Techn. L. 17, 2029–2031 (2005). http://dx.doi.org/10.1109/LPT.2005.856435CrossrefGoogle Scholar

  • [80] K. Sato, J. De Merlier, K. Mizutani, S. Sudo, S. Watanabe, K. Tsuruoka, K. Naniwae, and K. Kudo, “A compact external cavity wavelength tunable laser without an intracavity etalon”, IEEE Photonic. Techn. L. 18, 1191–1193 (2006). http://dx.doi.org/10.1109/LPT.2006.874717CrossrefGoogle Scholar

  • [81] U.H. Jacobs, K. Scholle, E. Heumann, G. Huber, M. Rattunde, and J. Wagner, “Room-temperature external cavity GaSb-based diode laser around 2.13 μm”, Appl. Phys. Lett. 85, 5825–5826 (2004). http://dx.doi.org/10.1063/1.1833561CrossrefGoogle Scholar

  • [82] E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 μm”, IEEE Photonic. Techn. L. 18, 1913–1915 (2006). http://dx.doi.org/10.1109/LPT.2006.881658CrossrefGoogle Scholar

  • [83] F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T.L. Myers, M.S. Taubaman, R.M. Wiliams, C.G. Bethea, K. Unterrainer, H.Y. Hwang, D.L. Sivco, A.L. Cho, A.M. Sergent, H.C. Liu, and E.A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission”, IEEE J. Quantum Elect. 38, 511–532 (2002). http://dx.doi.org/10.1109/JQE.2002.1005403CrossrefGoogle Scholar

  • [84] L. Hildebrandt, S. Stry, R. Knispel, J.R. Sacher, T. Beyer, M. Braun, A. Lambrecht, T. Gensty, W. Elsasser, Ch. Mann, and F. Fuchs, “Quantum cascade external cavity and DFB laser systems in the mid-infrared spectral range: devices and applications”, e-mail: lars@sacher-laser.com Google Scholar

  • [85] G.P. Luo, C. Peng, H.Q. Le, S.S. Pei, W.Y. Hwang, B. Ishaug, J. Um, J.N. Baillargeon, and C.H. Lin, “Grating-tuned external-cavity quantum-cascade semiconductor lasers”, Appl. Phys. Lett. 78, 2834–2836 (2001). http://dx.doi.org/10.1063/1.1371524CrossrefGoogle Scholar

  • [86] Y. Uenishi, K. Honna, and S. Nagaoka, “Tunable laser diode using a nickel micromachined external mirror”, Electron. Lett. 32, 1207–1208 (1996). http://dx.doi.org/10.1049/el:19960801CrossrefGoogle Scholar

  • [87] M.-H. Kiang, O. Solgaard, R.S. Muller, and K.Y. Lau, “Silicon-micromachined micromirrors with integrated high-precision actuators for external-cavity semiconductor lasers”, IEEE Photonic. Techn. L. 8, 96–97 (1996). Google Scholar

  • [88] A.Q. Liu, X.M. Zhang, V.M. Murukeshan, and Y.L. Lam, “A novel integrated micromachined tunable laser using polysilicon 3-D mirror”, IEEE Photonic. Techn. L. 11, 427–429 (2001). http://dx.doi.org/10.1109/68.920739CrossrefGoogle Scholar

  • [89] J.B.D. Soole, K. Poguntke, A. Scherer, H.P. LeBlanc, C. Chang-Hasnain, J.R. Hayes, C. Caneau, R. Bhat, and M.A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications”, Electron. Lett. 28, 1805–1807 (1992). http://dx.doi.org/10.1049/el:19921151CrossrefGoogle Scholar

  • [90] P.A. Kirkby, “Multichannel wavelength-switched transmitters and receivers-new component concepts for broad-band networks and distributed switching systems”, J. Lightwave Technol. 8, 202–211 (1990). http://dx.doi.org/10.1109/50.47872CrossrefGoogle Scholar

  • [91] O.K. Kwon, K.H. Kim, E.D. Sim, H.K. Yun, J.H. Kim, H.S. Kim, and K.R. Oh, “Proposal of electrically tunable external-cavity laser diode”, IEEE Photonic. Techn. L. 16, 1804–1806 (2004). http://dx.doi.org/10.1109/LPT.2004.831047CrossrefGoogle Scholar

  • [92] O.K. Kwon, J.H. Kim, K.H. Kim, E.D. Sim, H.S. Kim, and K.R. Oh, “Monolithically integrated grating cavity tunable lasers”, IEEE Photonic. Techn. L. 17, 1794–1796 (2005). http://dx.doi.org/10.1109/LPT.2005.853257CrossrefGoogle Scholar

  • [93] O.K. Kwon, J.H. Kim, K.H. Kim, E.D. Sim, and K.R. Oh, “Widely tunable multichannel grating cavity laser”, IEEE Photonic. Techn. L. 18, 1699–1701 (2006). http://dx.doi.org/10.1109/LPT.2006.879556CrossrefGoogle Scholar

About the article

Published Online: 2008-09-27

Published in Print: 2008-12-01

Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-008-0045-9.

Export Citation

© 2008 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in