Jump to ContentJump to Main Navigation
Show Summary Details

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

IMPACT FACTOR 2015: 1.611
Rank 98 out of 255 in category Electrical & Electronic Engineering and 43 out of 90 in Optics in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.624
Source Normalized Impact per Paper (SNIP) 2015: 1.387
Impact per Publication (IPP) 2015: 1.564

Open Access
See all formats and pricing


Select Volume and Issue


Corrugated SNOM probe with enhanced energy throughput

1Faculty of Physics, University of Warsaw, 7 Pasteura Str., 02-093, Warsaw, Poland

© 2008 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Opto-Electronics Review. Volume 16, Issue 4, Pages 451–457, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-008-0048-6, September 2008

Publication History

Published Online:


In a previous paper we proposed a modification of metal-coated tapered-fibre aperture probes for scanning near-field optical microscopes (SNOMs). The modification consists in radial corrugations of the metal-dielectric interface oriented inward the core. Their purpose is to facilitate the excitation of surface plasmons, which increase the transport of energy beyond the cut-off diameter and radiate a quasi-dipolar field from the probe output rim. An increase in energy output allows for reduction of the apex diameter, which is the main factor determining the resolution of the microscope. In two-dimensional finite-difference time-domain (FDTD) simulations we analyse the performance of the new type of SNOM probe. We admit, however, that the two-dimensional approximation gives better results than expected from exact three-dimensional ones. Nevertheless, optimisation of enhanced energy throughput in corrugated probes should lead to at least twice better resolution with the same sensitivity of detectors available nowadays.

Keywords: scanning near-field optical microscope - SNOM; SNOM resolution; SNOM probes; photon-plasmon coupling; tapered-fibre metal-coated corrugated SNOM probes

  • [1] E.H. Synge, A suggested method for extending the microscopic resolution into the ultramicroscopic region, Philos. Mag. 6, 356–362 (1928). [Crossref]

  • [2] D.W. Pohl, W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution l/20, Appl. Phys. Lett. 44, 651–653 (1984). http://dx.doi.org/10.1063/1.94865 [Crossref]

  • [3] E. Betzig, P.L. Finn, and J.S. Weiner, Combined shear force and near-field scanning optical microscopy, Appl. Phys. Lett. 60, 2484–2486 (1992). http://dx.doi.org/10.1063/1.106940 [Crossref]

  • [4] M. Ohtsu, Near-Field Nano/Atom Optics and Technology, Springer, Tokyo, 1998.

  • [5] J. Kim and K.B. Song, “Recent progress of nano-technology with NSOM”, Micron 38, 409–426 (2007). http://dx.doi.org/10.1016/j.micron.2006.06.010 [Web of Science] [Crossref]

  • [6] L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, 2007.

  • [7] L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E50, 4094–4196 (1994). [Crossref]

  • [8] K.Y. Kim, Y.K. Cho, H.S. Tae, and J.H. Lee, “Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes”, Opto-Electron. Rev. 14, 233–241 (2006). http://dx.doi.org/10.2478/s11772-006-0031-z [Crossref]

  • [9] A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching”, Rev. Sci. Instrum. 74, 3679–3683 (2003). http://dx.doi.org/10.1063/1.1589583 [Crossref]

  • [10] L.H. Haber, R.D. Schaller, J.C. Johnson, and R.J. Saykally, “Shape control of near-field probes using dynamic meniscus etching”, J. Microsc. 214, 27–35 (2004). http://dx.doi.org/10.1111/j.0022-2720.2004.01308.x [Crossref]

  • [11] J. Yang, J. Zhang, Z. Li, and Q. Gong, “Fabrication of high-quality SNOM probes by pre-treating the fibres before chemical etching”, J. Microsc. 228, 40–44 (2007). http://dx.doi.org/10.1111/j.1365-2818.2007.01821.x [Web of Science] [Crossref]

  • [12] T. Yatsui, M. Kourogi, and M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure”, Appl. Phys. Lett. 71, 1756–1758 (1997). http://dx.doi.org/10.1063/1.119390 [Crossref]

  • [13] S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber”, Opt. Commun. 146, 45–48 (1998). http://dx.doi.org/10.1016/S0030-4018(97)00506-3 [Crossref]

  • [14] T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure”, Appl. Phys. Lett. 73, 2090–2092 (1998). http://dx.doi.org/10.1063/1.122387 [Crossref]

  • [15] P. Grabiec, T. Gotszalk, J. Radojewski, K. Edinger, N. Abedinov, and I.W. Rangelow, “SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis”, Microelectron. Eng. 61/62, 981–986 (2002). http://dx.doi.org/10.1016/S0167-9317(02)00428-8 [Crossref]

  • [16] S. Bargiel, D. Heinis, Ch. Gorecki, A. Gorecka-Drzazga, J.A. Dziuban, and M. Jozwik, “A micromachined silicon-based probe for a scanning near-field optical microscope on-chip”, Meas. Sci. Technol. 17, 32–37 (2006). http://dx.doi.org/10.1088/0957-0233/17/1/007 [Crossref]

  • [17] W.C.L. Hopman, R. Stoffer, and R.M. de Ridder, “High-resolution measurement of resonant wave patterns by perturbing the evanescent field using a nanosized probe in a transmission scanning near-field optical microscopy configuration”, J. Lightwave Technol. 25, 1811–1818 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-7-1811 http://dx.doi.org/10.1109/JLT.2007.897693 [Web of Science] [Crossref]

  • [18] E.X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture”, Appl. Phys. Lett. 86, 111106 (2005). http://dx.doi.org/10.1063/1.1875747 [Crossref]

  • [19] K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons”, Opt. Express 14, 832–846 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-832 http://dx.doi.org/10.1364/OPEX.14.000832 [Crossref]

  • [20] T.J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope”, Opt. Express 15, 10920–10928 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-17-10920 http://dx.doi.org/10.1364/OE.15.010920 [Crossref]

  • [21] A. Drezet, S. Huant, and J.C. Woehl, “In situ characterization of optical tips using single fluorescent nanobeads”, J. Lumin. 107, 176–181 (2004). http://dx.doi.org/10.1016/j.jlumin.2003.12.053 [Crossref]

  • [22] T.J. Antosiewicz and T. Szoplik, “Description of near-and far-field light emitted from a metal-coated tapered fiber tip”, Opt. Express 15, 7845–7852 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7845 http://dx.doi.org/10.1364/OE.15.007845 [Crossref]

  • [23] C. Sönnichsen, “Plasmons in metal nanostructures”, PhD Thesis Ludwig-Maximilians-Universtät München, München, (2001).

  • [24] P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972). [Crossref]

  • [25] W. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice”, Opt. Express 13, 4818–4827 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4818 http://dx.doi.org/10.1364/OPEX.13.004818 [Crossref]

  • [26] S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

  • [27] A. Drezet, M.J. Nasse, S. Huant, and J.C. Woehl, “The optical near-field of an aperture tip”, Europhys. Lett. 66, 41–47 (2004). http://dx.doi.org/10.1209/epl/i2003-10138-7 [Crossref]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Piotr Wróbel, Tomasz J. Antosiewicz, Tomasz Stefaniuk, and Tomasz Szoplik
Journal of Applied Physics, 2012, Volume 112, Number 7, Page 074304
P. Wróbel, T. Stefaniuk, T. J. Antosiewicz, A. Libura, G. Nowak, T. Wejrzanowski, M. Andrzejczuk, K. J. Kurzydłowski, K. Jedrzejewski, and T. Szoplik
Optics Express, 2012, Volume 20, Number 13, Page 14508
Tomasz J. Antosiewicz, Piotr Wróbel, and Tomasz Szoplik
Plasmonics, 2011, Volume 6, Number 1, Page 11
Tomasz J. Antosiewicz, Piotr Wróbel, and Tomasz Szoplik
Optics Express, 2010, Volume 18, Number 25, Page 25906
Valeria Lotito, Urs Sennhauser, and Christian Hafner
Optics Express, 2010, Volume 18, Number 8, Page 8722
Tomasz J. Antosiewicz, Piotr Wróbel, and Tomasz Szoplik
Optics Express, 2009, Volume 17, Number 11, Page 9191

Comments (0)

Please log in or register to comment.