Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 16, Issue 4 (Dec 2008)

Issues

Corrugated SNOM probe with enhanced energy throughput

T. Antosiewicz / T. Szoplik
Published Online: 2008-09-27 | DOI: https://doi.org/10.2478/s11772-008-0048-6

Abstract

In a previous paper we proposed a modification of metal-coated tapered-fibre aperture probes for scanning near-field optical microscopes (SNOMs). The modification consists in radial corrugations of the metal-dielectric interface oriented inward the core. Their purpose is to facilitate the excitation of surface plasmons, which increase the transport of energy beyond the cut-off diameter and radiate a quasi-dipolar field from the probe output rim. An increase in energy output allows for reduction of the apex diameter, which is the main factor determining the resolution of the microscope. In two-dimensional finite-difference time-domain (FDTD) simulations we analyse the performance of the new type of SNOM probe. We admit, however, that the two-dimensional approximation gives better results than expected from exact three-dimensional ones. Nevertheless, optimisation of enhanced energy throughput in corrugated probes should lead to at least twice better resolution with the same sensitivity of detectors available nowadays.

Keywords: scanning near-field optical microscope - SNOM; SNOM resolution; SNOM probes; photon-plasmon coupling; tapered-fibre metal-coated corrugated SNOM probes

  • [1] E.H. Synge, A suggested method for extending the microscopic resolution into the ultramicroscopic region, Philos. Mag. 6, 356–362 (1928). CrossrefGoogle Scholar

  • [2] D.W. Pohl, W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution l/20, Appl. Phys. Lett. 44, 651–653 (1984). http://dx.doi.org/10.1063/1.94865CrossrefGoogle Scholar

  • [3] E. Betzig, P.L. Finn, and J.S. Weiner, Combined shear force and near-field scanning optical microscopy, Appl. Phys. Lett. 60, 2484–2486 (1992). http://dx.doi.org/10.1063/1.106940CrossrefGoogle Scholar

  • [4] M. Ohtsu, Near-Field Nano/Atom Optics and Technology, Springer, Tokyo, 1998. Google Scholar

  • [5] J. Kim and K.B. Song, “Recent progress of nano-technology with NSOM”, Micron 38, 409–426 (2007). http://dx.doi.org/10.1016/j.micron.2006.06.010Web of ScienceCrossrefGoogle Scholar

  • [6] L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, 2007. Google Scholar

  • [7] L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E50, 4094–4196 (1994). CrossrefGoogle Scholar

  • [8] K.Y. Kim, Y.K. Cho, H.S. Tae, and J.H. Lee, “Optical guided dispersions and subwavelength transmissions in dispersive plasmonic circular holes”, Opto-Electron. Rev. 14, 233–241 (2006). http://dx.doi.org/10.2478/s11772-006-0031-zCrossrefGoogle Scholar

  • [9] A. Lazarev, N. Fang, Q. Luo, and X. Zhang, “Formation of fine near-field scanning optical microscopy tips. Part I. By static and dynamic chemical etching”, Rev. Sci. Instrum. 74, 3679–3683 (2003). http://dx.doi.org/10.1063/1.1589583CrossrefGoogle Scholar

  • [10] L.H. Haber, R.D. Schaller, J.C. Johnson, and R.J. Saykally, “Shape control of near-field probes using dynamic meniscus etching”, J. Microsc. 214, 27–35 (2004). http://dx.doi.org/10.1111/j.0022-2720.2004.01308.xCrossrefGoogle Scholar

  • [11] J. Yang, J. Zhang, Z. Li, and Q. Gong, “Fabrication of high-quality SNOM probes by pre-treating the fibres before chemical etching”, J. Microsc. 228, 40–44 (2007). http://dx.doi.org/10.1111/j.1365-2818.2007.01821.xWeb of ScienceCrossrefGoogle Scholar

  • [12] T. Yatsui, M. Kourogi, and M. Ohtsu, “Highly efficient excitation of optical near-field on an apertured fiber probe with an asymmetric structure”, Appl. Phys. Lett. 71, 1756–1758 (1997). http://dx.doi.org/10.1063/1.119390CrossrefGoogle Scholar

  • [13] S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara, and M. Ohtsu, “Fabrication of a triple tapered probe for near-field optical spectroscopy in UV region based on selective etching of a multistep index fiber”, Opt. Commun. 146, 45–48 (1998). http://dx.doi.org/10.1016/S0030-4018(97)00506-3CrossrefGoogle Scholar

  • [14] T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure”, Appl. Phys. Lett. 73, 2090–2092 (1998). http://dx.doi.org/10.1063/1.122387CrossrefGoogle Scholar

  • [15] P. Grabiec, T. Gotszalk, J. Radojewski, K. Edinger, N. Abedinov, and I.W. Rangelow, “SNOM/AFM microprobe integrated with piezoresistive cantilever beam for multifunctional surface analysis”, Microelectron. Eng. 61/62, 981–986 (2002). http://dx.doi.org/10.1016/S0167-9317(02)00428-8CrossrefGoogle Scholar

  • [16] S. Bargiel, D. Heinis, Ch. Gorecki, A. Gorecka-Drzazga, J.A. Dziuban, and M. Jozwik, “A micromachined silicon-based probe for a scanning near-field optical microscope on-chip”, Meas. Sci. Technol. 17, 32–37 (2006). http://dx.doi.org/10.1088/0957-0233/17/1/007CrossrefGoogle Scholar

  • [17] W.C.L. Hopman, R. Stoffer, and R.M. de Ridder, “High-resolution measurement of resonant wave patterns by perturbing the evanescent field using a nanosized probe in a transmission scanning near-field optical microscopy configuration”, J. Lightwave Technol. 25, 1811–1818 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-7-1811 http://dx.doi.org/10.1109/JLT.2007.897693Web of ScienceCrossrefGoogle Scholar

  • [18] E.X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture”, Appl. Phys. Lett. 86, 111106 (2005). http://dx.doi.org/10.1063/1.1875747CrossrefGoogle Scholar

  • [19] K. Tanaka, M. Tanaka, and T. Sugiyama, “Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons”, Opt. Express 14, 832–846 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-832 http://dx.doi.org/10.1364/OPEX.14.000832CrossrefGoogle Scholar

  • [20] T.J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope”, Opt. Express 15, 10920–10928 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-17-10920 http://dx.doi.org/10.1364/OE.15.010920CrossrefGoogle Scholar

  • [21] A. Drezet, S. Huant, and J.C. Woehl, “In situ characterization of optical tips using single fluorescent nanobeads”, J. Lumin. 107, 176–181 (2004). http://dx.doi.org/10.1016/j.jlumin.2003.12.053CrossrefGoogle Scholar

  • [22] T.J. Antosiewicz and T. Szoplik, “Description of near-and far-field light emitted from a metal-coated tapered fiber tip”, Opt. Express 15, 7845–7852 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7845 http://dx.doi.org/10.1364/OE.15.007845CrossrefGoogle Scholar

  • [23] C. Sönnichsen, “Plasmons in metal nanostructures”, PhD Thesis Ludwig-Maximilians-Universtät München, München, (2001). Google Scholar

  • [24] P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972). CrossrefGoogle Scholar

  • [25] W. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice”, Opt. Express 13, 4818–4827 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4818 http://dx.doi.org/10.1364/OPEX.13.004818CrossrefGoogle Scholar

  • [26] S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007. Google Scholar

  • [27] A. Drezet, M.J. Nasse, S. Huant, and J.C. Woehl, “The optical near-field of an aperture tip”, Europhys. Lett. 66, 41–47 (2004). http://dx.doi.org/10.1209/epl/i2003-10138-7CrossrefGoogle Scholar

About the article

Published Online: 2008-09-27

Published in Print: 2008-12-01


Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-008-0048-6.

Export Citation

© 2008 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in