Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
Alle Formate und Preise
Weitere Optionen …
Band 18, Heft 1

Hefte

Recent advances on single photon sources based on single colloidal nanocrystals

M. Vittorio
  • National Nanotechnology Laboratory of CNR-INFM, c/o Distretto Tecnologico ISUFI — Università del Salento, Via Arnesano, 73100, Lecce, Italy
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ F. Pisanello
  • National Nanotechnology Laboratory of CNR-INFM, c/o Distretto Tecnologico ISUFI — Università del Salento, Via Arnesano, 73100, Lecce, Italy
  • Laboratoire Kastler Brossel, CNRS UMR8552, Ecole Normale Supérieure, Université Pierre et Marie Curie, 4 Place Jussieu, Paris, 75005, France
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ L. Martiradonna
  • National Nanotechnology Laboratory of CNR-INFM, c/o Distretto Tecnologico ISUFI — Università del Salento, Via Arnesano, 73100, Lecce, Italy
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ A. Qualtieri
  • National Nanotechnology Laboratory of CNR-INFM, c/o Distretto Tecnologico ISUFI — Università del Salento, Via Arnesano, 73100, Lecce, Italy
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ T. Stomeo
  • National Nanotechnology Laboratory of CNR-INFM, c/o Distretto Tecnologico ISUFI — Università del Salento, Via Arnesano, 73100, Lecce, Italy
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ A. Bramati
  • Laboratoire Kastler Brossel, CNRS UMR8552, Ecole Normale Supérieure, Université Pierre et Marie Curie, 4 Place Jussieu, Paris, 75005, France
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ R. Cingolani
  • National Nanotechnology Laboratory of CNR-INFM, c/o Distretto Tecnologico ISUFI — Università del Salento, Via Arnesano, 73100, Lecce, Italy
  • E-Mail
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
Online erschienen: 30.12.2009 | DOI: https://doi.org/10.2478/s11772-009-0026-7

Abstract

Single colloidal quantum dots (QDs) are increasingly exploited as triggered sources of single photons. This review reports on recent results on single photon sources (SPS) based on colloidal quantum dots, whose size, shape and optical properties can be finely tuned by wet chemistry approach. First, we address the optical properties of different colloidal nanocrystals, such as dots, rods and dot in rods and their use as single photon sources will be discussed. Then, we describe different techniques for isolation and positioning single QDs, a major issue for fabrication of single photon sources, and various approaches for the embedding single nanocrystals inside microcavities. The insertion of single colloidal QDs in quantum confined optical systems allows one to improve their overall optical properties and performances in terms of efficiency, directionality, life time, and polarization control. Finally, electrical pumping of colloidal nanocrystals light emitting devices and of NC-based single photon sources is reviewed.

Keywords: quantum dots; colloidal nanocrystals; emission efficiency; microcavity optical modes

  • [1] D. Bouwmeester, A.K. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer, Berlin, 2000). Google Scholar

  • [2] A.N. Boto, P. Kok, D.S. Abrams, S.L. Braunstein, C.P. Williams, and J.P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit”, Phys. Rev. Lett. 85, 2733–2736 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.2733CrossrefGoogle Scholar

  • [3] E. Knill, R. Laflamme, and G.J. Milburn, “A scheme for efficient quantum computation with linear optics”, Nature 409, 46–52 (2001). http://dx.doi.org/10.1038/35051009CrossrefGoogle Scholar

  • [4] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography”, Rev. Mod. Phys. 74, 145–195 (2002). http://dx.doi.org/10.1103/RevModPhys.74.145CrossrefGoogle Scholar

  • [5] P. Michler, A. Imamoglu, M.D. Mason, P.J. Carson, G.F. Strouse, and S.K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature”, Nature 406, 968–970 (2000). http://dx.doi.org/10.1038/35023100CrossrefGoogle Scholar

  • [6] M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G.S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: A single quantum dot in a micropost microcavity”, Phys. Rev. Lett. 89, 233602–233605 (2002). http://dx.doi.org/10.1103/PhysRevLett.89.233602CrossrefGoogle Scholar

  • [7] W.K. Wootters and W.H. Zurek, “A single quantum cannot be cloned”, Nature 299, 802–803 (1982). http://dx.doi.org/10.1038/299802a0CrossrefGoogle Scholar

  • [8] C.H. Bennett and G. Brassard, Int. Conf. on Computers, Systems and Signal Processing, 175, Bangalore, (1984). Google Scholar

  • [9] C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography”, J. Cryptol. 5, 3–28 (1992). http://dx.doi.org/10.1007/BF00191318CrossrefGoogle Scholar

  • [10] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography”, Rev. Mod. Phys. 74, 145–195 (2002). http://dx.doi.org/10.1103/RevModPhys.74.145CrossrefGoogle Scholar

  • [11] B. Lounis, and M. Orrit, “Single-photon sources”, Rep. Prog. Phys. 68, 1129–1179 (2005). http://dx.doi.org/10.1088/0034-4885/68/5/R04CrossrefGoogle Scholar

  • [12] A.J. Shields, “Semiconductor quantum light sources”, Nat. Photonics 1, 215–223 (2007). http://dx.doi.org/10.1038/nphoton.2007.46CrossrefGoogle Scholar

  • [13] A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.P. Poizat, and P. Grangier, “Single photon quantum cryptography”, Phys. Rev. Lett. 89, 187901–187904 (2008). http://dx.doi.org/10.1103/PhysRevLett.89.187901CrossrefGoogle Scholar

  • [14] E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, and Y. Yamamoto, “Secure communication: Quantum cryptography with a photon turnstile”, Nature 420, 762–762 (2002). http://dx.doi.org/10.1038/420762aCrossrefGoogle Scholar

  • [15] T.H. Lee, P. Kumar, and A. Mehta, “Oriented semiconducting polymer nanostructures as on-demand room-temperature single-photon source”, Appl. Phys. Lett. 85, 100–102 (2004). http://dx.doi.org/10.1063/1.1768301CrossrefGoogle Scholar

  • [16] C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons”, Phys. Rev. Lett. 85, 290–293 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.290CrossrefGoogle Scholar

  • [17] S. Strauf, P. Michler, M. Klude, D. Hommel, G. Bacher, and A. Forchel, “Quantum optical studies on individual acceptor bound excitons in a semiconductor”, Phys. Rev. Lett. 89, 177403 (2002). http://dx.doi.org/10.1103/PhysRevLett.89.177403CrossrefGoogle Scholar

  • [18] P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device”, Science 290, 2282–2285 (2000). http://dx.doi.org/10.1126/science.290.5500.2282CrossrefGoogle Scholar

  • [19] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current”, Appl. Phys. Lett. 40, 939–941 (1982). http://dx.doi.org/10.1063/1.92959CrossrefGoogle Scholar

  • [20] I.N. Stranski and L. Von Krastanow, “Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse”, Akademie der Wissenschaften und der Literatur in Mainz 146, 797 (1939). Google Scholar

  • [21] T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers”, Proc. IEEE 95, 1757–1766 (2007). http://dx.doi.org/10.1109/JPROC.2007.900899CrossrefGoogle Scholar

  • [22] N.N. Ledentsov, D. Bimberg, and Z.I. Alferov, “Progress in epitaxial growth and performance of quantum dot and quantum wire lasers”, J. Lightwave Technol. 26, 1540–1555 (2008). http://dx.doi.org/10.1109/JLT.2008.923645CrossrefGoogle Scholar

  • [23] A. Salhi, G. Rainò, L. Fortunato, V. Tasco, G. Visimberga, L. Martiradonna, M.T. Todaro, M. De Giorgi, R. Cingolani, A. Trampert, M. De Vittorio, and A. Passaseo, “Enhanced performances of quantum dot lasers operating at 1.3 µm”, IEEE J. Sel. Top. Quant. 14, 1188–1196 (2008). http://dx.doi.org/10.1109/JSTQE.2008.916182CrossrefGoogle Scholar

  • [24] C.B. Murray, D.J. Norris, and M.G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites”, J. Am. Chem. Soc. 115, 8706–8715 (1993). http://dx.doi.org/10.1021/ja00072a025CrossrefGoogle Scholar

  • [25] S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K”, Nat. Mater. 5, 887–892 (2006). http://dx.doi.org/10.1038/nmat1763CrossrefGoogle Scholar

  • [26] P. Michler, A. Imamoglu, M.D. Mason, P.J. Carson, G.F. Strouse, and S.K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature”, Nature 406, 968–970 (2000). http://dx.doi.org/10.1038/35023100CrossrefGoogle Scholar

  • [27] B. Lounis and W.E. Moerner, “Single photons on demand from a single molecule at room temperature”, Nature 407, 491–493 (2000). http://dx.doi.org/10.1038/35035032CrossrefGoogle Scholar

  • [28] X. Brokmann, L. Coolen, M. Dahan, and J.P. Hermier, “Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission”, Phys. Rev. Lett. 93 107403–107406 (2004). http://dx.doi.org/10.1103/PhysRevLett.93.107403CrossrefGoogle Scholar

  • [29] J. Hu, L.S. Li, W. Yang, L. Manna, L.W. Wang, and A.P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods”, Science 292, 2060–2063 (2001). http://dx.doi.org/10.1126/science.1060810CrossrefGoogle Scholar

  • [30] L. Manna, D.J. Milliron, and A. Meisel, E.C. Scher, and A.P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals”, Nat. Mater. 2, 382–385 (2003) http://dx.doi.org/10.1038/nmat902CrossrefGoogle Scholar

  • [31] D.V. Talapin, R. Koeppe, S. Götzinger, A. Kornowski, J.M. Lupton, A.L. Rogach, O. Benson, J. Feldmann, and H. Weller, “Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality”, Nano. Lett. 3, 1677 (2003). http://dx.doi.org/10.1021/nl034815sCrossrefGoogle Scholar

  • [32] A. Fiore, R. Mastria, M.G. Lupo, G. Lanzani, C. Giannini, E. Carlino, G. Morello, M. De Giorgi, Y. Li, R. Cingolani, and L. Manna, “Tetrapod-shaped colloidal nanocrystals of II–VI semiconductors prepared by seeded growth”, J. Am. Chem. Soc. 131, 2274–2282 (2009). http://dx.doi.org/10.1021/ja807874eCrossrefGoogle Scholar

  • [33] V.I. Klimov, A.A. Mikhailovsky, D.W. McBranch, C.A. Leatherdale, and M.G. Bawendi, “Quantization of multiparticle Auger rates in semiconductor quantum dots”, Science 287, 1011–1013 (2000). http://dx.doi.org/10.1126/science.287.5455.1011CrossrefGoogle Scholar

  • [34] M. Nirmal, B.O. Dabbousi, M.G. Bawendi, J.J. Macklin, J.K. Trautman, T.D. Harris, and L.E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals”, Nature 383, 802–804 (1996). http://dx.doi.org/10.1038/383802a0CrossrefGoogle Scholar

  • [35] B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots”, Nat. Mater. 7, 659–664 (2008). http://dx.doi.org/10.1038/nmat2222CrossrefGoogle Scholar

  • [36] X. Wang, X. Ren, K. Kahen, M.A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G.E. Cragg, A.L. Efros, and T.D. Krauss, “Non-blinking semiconductor nanocrystals”, Nature 459, 686–689 (2009). http://dx.doi.org/10.1038/nature08072CrossrefGoogle Scholar

  • [37] S.A. Empedocles, D.J. Norris, and M.G. Bawendi, Phys. Rev. Lett. 77, 3873–3876 (1996). http://dx.doi.org/10.1103/PhysRevLett.77.3873CrossrefGoogle Scholar

  • [38] H.P. Lu and X.S. Xie, “Single-molecule spectral fluctuations at room temperature”, Nature 385, 143–146 (1997). http://dx.doi.org/10.1038/385143a0CrossrefGoogle Scholar

  • [39] L. Biadala, Y. Louyer, P. Tamarat, and B. Lounis, “Direct observation of the two lowest exciton zero-phonon lines in single CdSe/ZnS nanocrystals”, Phys. Rev. Lett. 103, 037404–037407 (2009). http://dx.doi.org/10.1103/PhysRevLett.103.037404CrossrefGoogle Scholar

  • [40] L. Coolen, X. Brokmann, P. Spinicelli, and J.P. Hermier, “Emission characterization of a single CdSe-ZnS nanocrystal with high temporal and spectral resolution by photon-correlation Fourier spectroscopy”, Phys. Rev. Lett. 100, 027403–027406 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.027403CrossrefGoogle Scholar

  • [41] L. Manna, E. Scher, and A.P. Alivisatos, “Synthesis of soluble and processable rod, arrow, teardrop, and tetrapod shaped CdSe nanocrystals”, J. Am. Chem. Soc. 122, 12700–12706 (2000). http://dx.doi.org/10.1021/ja003055+CrossrefGoogle Scholar

  • [42] C.M. Liddell and C.J. Summers, “Monodispersed ZnS dimers, trimers, and tetramers for lower symmetry photonic crystal lattices”, Adv. Mater. 15, 1715–1719 (2003). http://dx.doi.org/10.1002/adma.200305283CrossrefGoogle Scholar

  • [43] L. Carbone, C, Nobile, M. De Giorgi, F. Della Sala, G. Morello, P. Pompa, M. Hytch, E. Snoeck, A. Fiore, I.R. Franchini, M. Nadasan, A.F. Silvestre, L. Chiodo, S. Kudera, R. Cingolani, R. Krahne, and L. Manna, “Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach”, Nano. Lett. 7, 2942 (2007). http://dx.doi.org/10.1021/nl0717661CrossrefGoogle Scholar

  • [44] G. Morello, F. Della Sala, L. Carbone, L. Manna, G. Maruccio, R. Cingolani, and M. De Giorgi, “Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field”, Phys. Rev. B78, 195313–195320 (2008). CrossrefGoogle Scholar

  • [45] F. Pisanello, L. Martiradonna, P. Spinicelli, A. Fiore, J.P. Hermier, L. Manna, R. Cingolani, E. Giacobino, M. De Vittorio, and A. Bramati, “Dots in rods as polarized single photon sources”, Superlattices Microst. doi:10.1016/j.spmi. 2009.06.009 (2009). CrossrefGoogle Scholar

  • [46] C.H. Bennet, “Quantum cryptography using any two nonorthogonal states”, Phys. Rev. Lett. 68, 3121–3124 (1992). http://dx.doi.org/10.1103/PhysRevLett.68.3121CrossrefGoogle Scholar

  • [47] F. Pisanello, L. Martiradonna, P. Spinicelli; A. Fiore, J.P. Hermier, L. Manna, R. Cingolani, E. Giacobino, A. Bramati, and M. De Vittorio, “Polarized single photon emission for quantum cryptography based on colloidal nanocrystals”, IEEE Proc. of 11 thInt. Conf. on Transparent Optical Networks, 1–4 (2009). Google Scholar

  • [48] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamolu “Quantum nature of a strongly coupled single quantum dot-cavity system”, Nature 445, 896–899 (2007). http://dx.doi.org/10.1038/nature05586CrossrefGoogle Scholar

  • [49] Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, “Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity”, Appl. Phys. Lett. 93, 183114 (2008). http://dx.doi.org/10.1063/1.3020295CrossrefGoogle Scholar

  • [50] M. Toishi, D. Englund, A. Faraon, and J. Vučković, “High-brightness single photon source from a quantum dot in a directional-emission nanocavity”, Opt. Express 17, 14618–14626 (2009). http://dx.doi.org/10.1364/OE.17.014618CrossrefGoogle Scholar

  • [51] E. Pelucchi, S. Watanabe, K. Leifer, Q. Zhu, B. Dwir, P. De Los Rios, and E. Kapon, “Mechanisms of quantum dot energy engineering by metalorganic vapour phase epitaxy on patterned nonplanar substrates”, Nano. Lett. 7, 1282–1285 (2007), Q. Zhu, K.F. Karlsson, E. Pelucchi, and E. Kapon, “Transition from two-Dimensional to three-dimensional quantum confinement in semiconductor quantum wires/quantum dots”, Nano. Lett. 7, 2227–2233 (2007). http://dx.doi.org/10.1021/nl0702012CrossrefGoogle Scholar

  • [52] C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system”, Appl. Phys. Lett. 94, 111111 (2009). http://dx.doi.org/10.1063/1.3097016CrossrefGoogle Scholar

  • [53] P. Gallo, M. Felici, B. Dwir, K.A. Atlasov, K.F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities”, Appl. Phys. Lett. 92, 263101 (2008). http://dx.doi.org/10.1063/1.2952278CrossrefGoogle Scholar

  • [54] A. Qualtieri, G. Morello, P. Spinicelli, M.T. Todaro, T. Stomeo, L. Martiradonna, M. De Giornia, X. Quélinc, S. Builc, A. Bramati, J.P. Hermier, R. Cingolani, and M. De Vittorio, “Room temperature single-photon sources based on single colloidal nanocrystals in microcavities”, Superlattices Microst. doi:10.1016/j.spmi.2009.05.004 (2009). CrossrefGoogle Scholar

  • [55] A. Qualtieri, L. Martiradonna, T. Stomeo, M.T. Todaro, R. Cingolani, and M. De Vittorio, “Multicoloured devices fabricated by direct lithography of colloidal nanocrystals”, Microelectron. Eng. 86, 1127–1130 (2009). http://dx.doi.org/10.1016/j.mee.2008.11.073CrossrefGoogle Scholar

  • [56] R. Krahne, T. Dadosh, Y. Gordin, A. Yacoby, H. Shtrikman, D. Mahalu, J. Sperling, and I. Bar-Joseph, “Nanoparticles and nanogaps: controlled positioning and fabrication”, Physica E17, 498–502 (2003) CrossrefGoogle Scholar

  • [57] S. Yoshii, S. Kumagai, K. Nishio, A. Kadotani, and I. Yamashita, “Electrostatic self-aligned placement of single nanodots by protein supramolecules”, Appl. Phys. Lett. 95, 133702 (2009). http://dx.doi.org/10.1063/1.3236524CrossrefGoogle Scholar

  • [58] P.R. Berman, Cavity Quantum Electrodynamics, Academic Press, San Diego, CA, 1994, T. Mokari and U. Banin, “ Synthesis and properties of CdSe/ZnS core/shell nanorods”, Chem. Mater. 15, 3955–3960 (2003). Google Scholar

  • [59] I.I. Rabi, “Space quantization in a gyrating magnetic field”, Phys. Rev. 51, 652–654 (1937). http://dx.doi.org/10.1103/PhysRev.51.652CrossrefGoogle Scholar

  • [60] L. Allen and J.H. Eberly, Optical Resonances and Two-Level Atoms, Wiley, New York, 1975. Google Scholar

  • [61] N. Le Thomas, U. Woggon, and O. Schöps, “Cavity QED with semiconductor nanocrystals”, Nano. Lett. 6, 557–561 (2006). http://dx.doi.org/10.1021/nl060003vCrossrefGoogle Scholar

  • [62] A. Shabaev and A.L. Efros, “1D exciton spectroscopy of semiconductor nanorods”, Nano. Lett. 4, 1821–1825 (2004). http://dx.doi.org/10.1021/nl049216fCrossrefGoogle Scholar

  • [63] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity”, Phys. Rev. Lett. 69, 3314–3317 (1992). http://dx.doi.org/10.1103/PhysRevLett.69.3314CrossrefGoogle Scholar

  • [64] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J.M. Raimond, and S. Haroche, “Quantum Rabi oscillation: A direct test of field quantization in a cavity”, Phys. Rev. Lett. 76, 1800 (19960. http://dx.doi.org/10.1103/PhysRevLett.76.1800CrossrefGoogle Scholar

  • [65] R.J. Thompson, G. Rempe, and H.J. Kimble “Observation of normal-mode splitting for an atom in an optical cavity”, Phys. Rev. Lett. 68, 1132 (1992). http://dx.doi.org/10.1103/PhysRevLett.68.1132CrossrefGoogle Scholar

  • [66] R.K. Chang, and A.J. Chamillo, “Optical processes in microcavities”, Advanced Series in Applied Physics 3, World Scientific, Singapore, 1996. Google Scholar

  • [67] H. Benisty, J.M. Gerard, R. Houdre, J. Rarity, and C. Weisbuch, “Confined photon systems”, Lecture Notes in Physics 531, Springer-Verlag, Berlin, 1999. Google Scholar

  • [68] Y. Yamamoto, F. Tassone, and H Cao, “Semiconductor cavity quantum electrodynamics”, Springer Tracts in Modern Physics 169, Springer-Verlag, Berlin 2000. Google Scholar

  • [69] M. Poitras, C.B. Lipson, H. Du, M.A. Hahn, and T.D. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity”, Appl. Phys. Lett. 82, 4032–4034 (2003). http://dx.doi.org/10.1063/1.1581007CrossrefGoogle Scholar

  • [70] M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal quantum dots in all-dielectric high-Q pillar microcavities”, Nano. Lett. 7, 2897–2900 (2007). http://dx.doi.org/10.1021/nl071812xCrossrefGoogle Scholar

  • [71] L. Martidadonna, L. Carbone, M. De Giorgi, L. Manna, G. Gigli, R. Cingolani, and M. De Vittorio, “High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology”, Appl. Phys. Lett. 88, 181108 (2006). http://dx.doi.org/10.1063/1.2200748CrossrefGoogle Scholar

  • [72] M.V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, “Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission”, Nano. Lett. 1, 309–314 (2001). http://dx.doi.org/10.1021/nl015545lCrossrefGoogle Scholar

  • [73] E. Yablonovitch, “Inhibited spontaneous emission in solidstate physics and electronics”, Phys. Rev. Lett. 58, 2059–2062 (1987). http://dx.doi.org/10.1103/PhysRevLett.58.2059CrossrefGoogle Scholar

  • [74] S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486–2489 (1987). http://dx.doi.org/10.1103/PhysRevLett.58.2486CrossrefGoogle Scholar

  • [75] O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, and I. Kim, “Two-dimensional photonic bandgap defect mode laser”, Science 284, 1819–1821 (1999). http://dx.doi.org/10.1126/science.284.5421.1819CrossrefGoogle Scholar

  • [76] B.S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity”, Nat. Mater. 4, 207–210 (2004). http://dx.doi.org/10.1038/nmat1320CrossrefGoogle Scholar

  • [77] T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity”, Nat. Photonics 1, 49–52 (2007). http://dx.doi.org/10.1038/nphoton.2006.51CrossrefGoogle Scholar

  • [78] Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 µm from colloidal PbSe quantum dots in an Si photonic crystal microcavity”, Appl. Phys. Lett. 90, 171105 (2007). http://dx.doi.org/10.1063/1.2731657CrossrefGoogle Scholar

  • [79] P. Lodahl, A.F. van Driel, I.S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W.L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals”, Nature 430, 654–657 (2004). http://dx.doi.org/10.1038/nature02772CrossrefGoogle Scholar

  • [80] J.M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity”, Phys. Rev. Lett. 81, 1110–1113 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.1110CrossrefGoogle Scholar

  • [81] S.G. Lukishova, L.J. Bissell, V.M. Menon, N. Valappil, M.A. Hahn, C.M. Evans, B. Zimmerman, T.D. Krauss, C.R. Stroud Jr, and R.W. Boyd, “Organic photonic bandgap microcavities doped with semiconductor nanocrystals for room-temperature on-demand single-photon sources”, J. Mod. Opt. 56, 167–174 (2009). http://dx.doi.org/10.1080/09500340802410106CrossrefGoogle Scholar

  • [82] A. Qualtieri, G. Morello, P. Spinicelli, M.T. Todaro, T. Stomeo, L. Martiradonna, M. De Giornia, X. Quélinc, S. Builc, A. Bramati, J.P. Hermier, R. Cingolani, and M. De Vittorio, “Nonclassical emission from single colloidal nanocrystals in a microcavity: a route towards room temperature single photon sources”, New J. Phys. 11, 033025 (2009). http://dx.doi.org/10.1088/1367-2630/11/3/033025CrossrefGoogle Scholar

  • [83] T. Förster, “Intermolecular energy transference and fluorescence”, Ann. Phys. Leipzig 2, 55–75 (1948). http://dx.doi.org/10.1002/andp.19484370105CrossrefGoogle Scholar

  • [84] T. Förster, “Experimentelle und theoretische untersuchung des zwischenmolekularen ubergangs von elektronenanre-gungsenergie”, Z. Naturforsch. 4a, 321–327 (1949). Google Scholar

  • [85] S. Coe, W.K. Woo, M. Bawendi, and V. Bulović, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices”, Nature 420, 800–803 (2002). http://dx.doi.org/10.1038/nature01217CrossrefGoogle Scholar

  • [86] V.L. Colvin, M.C. Schlamp, and A.P. Alivisatos, “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer”, Nature 370, 354–357 (1994). http://dx.doi.org/10.1038/370354a0CrossrefGoogle Scholar

  • [87] H. Huang, A. Dorn, V. Bulovic, and M. Bawendi, “Electrically driven light emission from single colloidal quantum dots at room temperature”, Appl. Phys. Lett. 90, 023110 (2007). http://dx.doi.org/10.1063/1.2425043CrossrefGoogle Scholar

  • [88] J. Müller, J.M. Lupton, P.G. Lagoudakis, F. Schindler, R. Koeppe, A.L. Rogach, J. Feldmann, D.V. Talapin, and H. Weller, “Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement”, Nano. Lett. 5, 2044–2049 (2005). http://dx.doi.org/10.1021/nl051596xCrossrefGoogle Scholar

  • [89] K. Becker, J.M. Lupton, J. Müller, A.L. Rogach, D.V. Talapin, H. Weller, and J. Feldmann, “Electrical control of Förster energy transfer”, Nat. Mater. 5, 777–781 (2006). http://dx.doi.org/10.1038/nmat1738CrossrefGoogle Scholar

  • [90] A.L. Rogach, T.A. Klar, J.M. Lupton, A. Meijerinkd, and J. Feldmann, “Energy transfer with semiconductor nanocrystals”, J. Mater. Chem. 19, 1208–1221 (2009). http://dx.doi.org/10.1039/b812884gCrossrefGoogle Scholar

  • [91] M. Achermann, M.A. Petruska, S. Kos, D.L. Smith, D.D. Koleske, and V.I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well”, Nature 429, 642–646 (2004). http://dx.doi.org/10.1038/nature02571CrossrefGoogle Scholar

  • [92] S. Nizamoglu, E. Sari, B. Jong-Hyeob, L. In-Hwan, and H. Volkan Demir, “Green/yellow solid-state lighting via radiative and nonradiative energy transfer involving colloidal semiconductor nanocrystals”, IEEE J. Sel. Top. Quant. 15, 1163–1170 (2009). http://dx.doi.org/10.1109/JSTQE.2009.2015680CrossrefGoogle Scholar

Artikelinformationen

Online erschienen: 30.12.2009

Erschienen im Druck: 01.03.2010


Quellenangabe: Opto-Electronics Review, Band 18, Heft 1, Seiten 1–9, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-009-0026-7.

Zitat exportieren

© 2010 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Kommentare (0)