Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter December 30, 2009

Time-resolved imaging of fluorescent inclusions in optically turbid medium — phantom study

  • M. Kacprzak EMAIL logo , A. Liebert , P. Sawosz , N. Żołek , D. Milej and R. Maniewski
From the journal Opto-Electronics Review

Abstract

We present results of application of a time-resolved optical system for imaging of fluorescence excited in an inclusion containing indocyanine green (ICG), and located in optically turbid medium. The developed imaging system enabled simultaneous acquisition of fluorescence and diffusive reflectance. Eight independent time-resolved measurement channels based on time-correlated single photon counting technique were applied. In four of these channels, used for the fluorescence detection, sets of filters were applied in order to block the excitation light. Fast optomechanical switches allowed us to illuminate sequentially nine different spots on the surface of the studied object and finally 4×4 pixels maps at excitation and emission wavelengths were obtained. A liquid phantom used in this study consists of the fish tank filed with a solution ofmilk and water with black ink added to obtain optical properties in the range of the optical properties typical for the living tissue. A gel ball of a diameter of 5 mm with precisely controlled concentration of ICG was immersed in the liquid. The measurements were performed for inclusion located at different depths and for various ICG concentrations in the gel ball and in the surrounding liquid. The recorded distributions of times of arrival (DTA) of fluorescence photons and times of flight (DTOF) of diffusely reflected photons were analyzed by calculation of their statistical moments. We observed specific changes in moments of the measured DTAs as a function of depth of immersion of the fluorescent inclusion in the medium. We noted also that the changes of moments depend significantly on concentration of the dye in the fluorescence inclusion as well as in the surrounding liquid.

[1] J. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edition, Kluwe Academic/Plenum Publishers, 1999. 10.1007/978-1-4757-3061-6Search in Google Scholar

[2] V. Ntziachristos, J. Ripoll, L.V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging, Nat. Biotechnol. 23, 313–320 (2005). http://dx.doi.org/10.1038/nbt107410.1038/nbt1074Search in Google Scholar PubMed

[3] R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets, Nat. Med. 9, 123–128 (2003). http://dx.doi.org/10.1038/nm0103-12310.1038/nm0103-123Search in Google Scholar PubMed

[4] J.S. Reynolds, T.L. Troy, R.H. Mayer, A.B. Thompson, D.J. Waters, K.K. Cornell, P.W. Snyder, and E.M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents, Photochem. Photobiol. 70, 87–94 (1999). http://dx.doi.org/10.1111/j.1751-1097.1999.tb01953.x10.1111/j.1751-1097.1999.tb01953.xSearch in Google Scholar

[5] B.W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue, Appl. Optics 37, 7429–7436 (1998). http://dx.doi.org/10.1364/AO.37.00742910.1364/AO.37.007429Search in Google Scholar PubMed

[6] R. Weersink, M.S. Patterson, K. Diamond, S. Silver, and N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique, Appl. Optics 40, 6389–6395 (2001). http://dx.doi.org/10.1364/AO.40.00638910.1364/AO.40.006389Search in Google Scholar

[7] K.R. Diamond, T.J. Farrell, and M.S. Patterson, “Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence, Phys. Med. Biol. 48, 4135–4149 (2003). http://dx.doi.org/10.1088/0031-9155/48/24/01110.1088/0031-9155/48/24/011Search in Google Scholar PubMed

[8] D.E. Hyde, T.J. Farrell, M.S. Patterson, and B.C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations, Phys. Med. Biol. 46, 369–83 (2001). http://dx.doi.org/10.1088/0031-9155/46/2/30710.1088/0031-9155/46/2/307Search in Google Scholar PubMed

[9] D. Stasic, T.J. Farrell, and M.S. Patterson, “The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions, Phys. Med. Biol. 48, 3459–3474 (2003). http://dx.doi.org/10.1088/0031-9155/48/21/00110.1088/0031-9155/48/21/001Search in Google Scholar PubMed

[10] R.H. Mayer, J.S. Reynolds, and E.N. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media lay frequency-domain photon migration, Appl. Optics 38, 4930–4938 (1999). http://dx.doi.org/10.1364/AO.38.00493010.1364/AO.38.004930Search in Google Scholar

[11] J. Wu, J. Wang, L. Perelman, I. Itzkan, R. Dasari, and F. Ms, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media, Opt. Lett. 20, 489–491 (1995). http://dx.doi.org/10.1364/OL.20.00048910.1364/OL.20.000489Search in Google Scholar

[12] D. Hattery, V. Chernomordik, M. Loew, I. Gannot, and A. Gandjbakhche, “Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue, J. Opt. Soc. Am. A 18, 1523–1530 (2001). http://dx.doi.org/10.1364/JOSAA.18.00152310.1364/JOSAA.18.001523Search in Google Scholar PubMed

[13] D.Y. Paithankar, A.U. Chen, B.W. Pogue, M.S. Patterson, and E.M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media, Appl. Optics 36, 2260–2272 (1997). http://dx.doi.org/10.1364/AO.36.00226010.1364/AO.36.002260Search in Google Scholar

[14] C.L. Hutchinson, T.L. Troy, and E.M. Sevick-Muraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics, Appl. Optics 35, 2325–2332 (1996). http://dx.doi.org/10.1364/AO.35.00232510.1364/AO.35.002325Search in Google Scholar PubMed

[15] K. Vishwanath, B. Pogue, and M.A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods, Phys. Med. Biol. 47, 3387–3405 (2002). http://dx.doi.org/10.1088/0031-9155/47/18/30810.1088/0031-9155/47/18/308Search in Google Scholar PubMed

[16] M. Patterson and B. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues, Appl. Optics 33, 1963–1974 (1994). http://dx.doi.org/10.1364/AO.33.00196310.1364/AO.33.001963Search in Google Scholar PubMed

[17] A.E. Cerussi, J.S. Maier, S. Fantini, M.A. Franceschini, W.W. Mantulin, and E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues, Appl. Optics 36, 116–124 (1997). http://dx.doi.org/10.1364/AO.36.00011610.1364/AO.36.000116Search in Google Scholar

[18] M. Sadoqi, P. Riseborough, and S. Kumar, “Analytical models for time resolved fluorescence spectroscopy in tissues, Phys. Med. Biol. 46, 2725–2743 (2001). http://dx.doi.org/10.1088/0031-9155/46/10/31410.1088/0031-9155/46/10/314Search in Google Scholar PubMed

[19] D. Hall, G. Ma, F. Lesage, and Y. Wang, “Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium, Opt. Lett. 29, 2258–2260 (2004). http://dx.doi.org/10.1364/OL.29.00225810.1364/OL.29.002258Search in Google Scholar

[20] A. Corlu, R. Choe, T. Durduran, M. Rosen, M. Schweiger, S. Arridge, M. Schnall, A. Yodh, and R. Laing, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans, Opt. Express 15, 6696–6716 (2007). http://dx.doi.org/10.1364/OE.15.00669610.1364/OE.15.006696Search in Google Scholar PubMed

[21] V. Ntziachristos, C.H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo, Nat. Med. 8, 757–760 (2002). http://dx.doi.org/10.1038/nm72910.1038/nm729Search in Google Scholar

[22] A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands, Nat. Biotechnol. 19, 327–331 (2001). http://dx.doi.org/10.1038/8670710.1038/86707Search in Google Scholar

[23] R. Weissleder, “Scaling down imaging: Molecular mapping of cancer in mice, Nat. Rev. Cancer 2, 11–18 (2002). http://dx.doi.org/10.1038/nrc70110.1038/nrc701Search in Google Scholar

[24] A. Liebert, H. Wabnitz, H. Obrig, R. Erdmann, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and J. Steinbrink, “Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain, Neuroimage 31, 600–608 (2006). http://dx.doi.org/10.1016/j.neuroimage.2005.12.04610.1016/j.neuroimage.2005.12.046Search in Google Scholar

[25] J.G. Fujimoto and D.L. Farkas, Biomedical Optical Imaging, Oxford University Press, 2009. Search in Google Scholar

[26] K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar, R. Rydell, D. Jocham, H. Diddens, S. Bown, G. Gregory, S. Montan, S. Andersson-Engels, and S. Svanberg, “Clinical multi-colour fluorescence imaging of malignant tumours-initial experience, Acta Radiol. 39, 2–9 (1998). http://dx.doi.org/10.3109/0284185980917214110.3109/02841859809172141Search in Google Scholar

[27] M.A. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. Hortnagl, H. Lochs, and H. Rinneberg, “Time gated fluorescence spectroscopy in Barrett’s oesophagus, Gut 52, 28–33 (2003). http://dx.doi.org/10.1136/gut.52.1.2810.1136/gut.52.1.28Search in Google Scholar

[28] J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain, Neurodegener Dis. 5, 296–303 (2008). http://dx.doi.org/10.1159/00013561410.1159/000135614Search in Google Scholar

[29] J. Fishbaugh, “Retina: indocyanine green (ICG) angiography, Insight 19, 30–2 (1994). Search in Google Scholar

[30] A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance, Neuroimage 24, 426–435 (2005). http://dx.doi.org/10.1016/j.neuroimage.2004.08.04610.1016/j.neuroimage.2004.08.046Search in Google Scholar

[31] M. Kacprzak, A. Liebert, J. Maczewska, P. Sawosz, L. Krolicki, and R. Maniewski, “Monitoring of contrast agent inflow into human brain by multichannel time-resolved diffuse reflectometry, Proc. Biomedical Optics/Digital Holography and Three-Dimensional Imaging/Laser Applications to Chemical, Security and Environmental Analysis The Optical Society of America, Washington, DC, 2008, St. Petersburg, Florida, CD-ROM, 2008. 10.1364/BIOMED.2008.BMD46Search in Google Scholar

[32] T. Desmettre, J.M. Devoisselle, and S. Mordon, “Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography, Surv. Ophthalmol. 45, 15–27 (2000). http://dx.doi.org/10.1016/S0039-6257(00)00123-510.1016/S0039-6257(00)00123-5Search in Google Scholar

[33] R.C. Benson and H.A. Kues, “Fluorescence properties of indocyanine green as related to angiography, Phys. Med. Biol. 23, 159–163 (1978). http://dx.doi.org/10.1088/0031-9155/23/1/01710.1088/0031-9155/23/1/017Search in Google Scholar

[34] J. Pauli, T. Vag, R. Haag, M. Spieles, M. Wenzel, W. A. Kaiser, U. Resch-Genger, and I. Hilger, “An in vitro characterization study of new near infrared dyes for molecular imaging, Eur. J. Med. Chem. 44 (2009). 10.1016/j.ejmech.2009.01.019Search in Google Scholar

[35] M. Kacprzak, A. Liebert, P. Sawosz, N.S. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation, J. Biomed. Opt. 12, 034019(1–14) (2007). http://dx.doi.org/10.1117/1.274396410.1117/1.2743964Search in Google Scholar

[36] R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbiec, “Selected applications of near infrared optical methods in medical diagnosis, Opto-Electron. Rev. 12, 255–262 (2004). Search in Google Scholar

[37] M. Kacprzak, P. Sawosz, A. Liebert, and R. Maniewski, “Multichannel time-correlated single photon counting instrument for imaging of brain oxygenation, Nat. Conf. on Electron. Tech., Cracow, 2007. Search in Google Scholar

[38] M. Hope-Ross, L.A. Yannuzzi, E.S. Gragoudas, D.R. Guyer, J.S. Slakter, J.A. Sorenson, S. Krupsky, D.A. Orlock, and C.A. Puliafito, “Adverse reactions due to indocyanine green, Ophthalmology 101, 529–533 (1994). Search in Google Scholar

[39] R.W. Flower, “Simple adaptors for fast conversion of a fundus camera for rapid-sequence ICG fluorescence choroidal angiography, J. Biol. Photogr. Assoc. 45, 43–47 (1977). Search in Google Scholar

[40] Y. Ishigami, M. Masuzawa, E. Miyoshi, M. Kato, K. Tamura, M. Kanda, K. Awazu, K. Taniguchi, M. Kurita, N. Hayashi, S. Kawano, H. Fusamoto, and T. Kamada, “Clinical applications of ICG Finger Monitor in patients with liver disease, J. Hepatol. 19, 232–240 (1993). http://dx.doi.org/10.1016/S0168-8278(05)80577-X10.1016/S0168-8278(05)80577-XSearch in Google Scholar

[41] O. Okochi, T. Kaneko, H. Sugimoto, S. Inoue, S. Takeda, and A. Nakao, “ICG pulse spectrophotometry for perioperative liver function in hepatectomy, J. Surg. Res. 103, 109–113 (2002). http://dx.doi.org/10.1006/jsre.2001.632810.1006/jsre.2001.6328Search in Google Scholar PubMed

[42] S. Del Bianco, F. Martelli, F. Cignini, G. Zaccanti, A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, and R. Cubeddu, “Liquid phantom for investigating light propagation through layered diffusive media, Opt. Express 12, 2102–2111 (2004). http://dx.doi.org/10.1364/OPEX.12.00210210.1364/OPEX.12.002102Search in Google Scholar PubMed

[43] A. Liebert, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons, Appl. Optics 42, 5785–5792 (2003). http://dx.doi.org/10.1364/AO.42.00578510.1364/AO.42.005785Search in Google Scholar PubMed

[44] A. Liebert, H. Wabnitz, N. Zolek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media, Opt. Express 16, 13188–202 (2008). http://dx.doi.org/10.1364/OE.16.01318810.1364/OE.16.013188Search in Google Scholar

[45] http://omlc.ogi.edu/spectra/icg. Search in Google Scholar

[46] A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons, Appl. Optics 43, 3037–3047 (2004). http://dx.doi.org/10.1364/AO.43.00303710.1364/AO.43.003037Search in Google Scholar

Published Online: 2009-12-30
Published in Print: 2010-3-1

© 2010 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-009-0027-6/html
Scroll to top button