[1] P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging. Introduction and techniques, Int. J. Infrared Milli. Waves
27, 465–480 (2006). Google Scholar
[2] G. Chattopadhyay, “Submillimeter-wave coherent and incoherent sensors for space applications, in Sensors, Series: Lecture Notes in Electrical Engineering, Vol. 21, p. 387, edited by S.C. Mukhopadhyay and R.Y.M. Huang, Springer, New York, 2008. Google Scholar
[3] T.W. Crowe, W.L. Bishop, D.W. Porterfield, J.L. Hesler, and R.M. Weikle, “Opening the terahertz window with integrated diode circuits, IEEE J. Solid-St. Circ.
40, 2104–2110 (2005). Google Scholar
[4] D. Dragoman and M. Dragoman, “Terahertz fields and applications, Prog. Quant. Electron.
28, 1–66 (2004). CrossrefGoogle Scholar
[5] J. Wei, D. Olaya, B.S. Karasik, S.V. Pereverzev, A.V. Sergeev, and M.E. Gershenzon, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics, Nat. Nanotechnol.
3, 496–500 (2008). CrossrefGoogle Scholar
[6] A.W. Blain, I. Smail, R.J. Ivison, J.P. Kneib, and D.T. Frayer, “Submillimetre galaxies, Phys. Rep.
369, 111–176 (2002). CrossrefGoogle Scholar
[7] J. Zmuidzinas and P.L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics, Proc. IEEE
92, 1597–1616 (2004). CrossrefGoogle Scholar
[8] P.H. Siegel, “Terahertz technology, IEEE T. Microw. Theory
50, 910–928 (2002). CrossrefGoogle Scholar
[9] B. Ferguson and X.C. Zhang, “Materials for terahertz science and technology, Nature Mater.
1, 26–33 (2002). CrossrefGoogle Scholar
[10] D. Mittleman, Sensing with Terahertz Radiation, Springer-Verlag, Berlin, 2003. Google Scholar
[11] E.R. Brown, “Fundamentals of terrestrial millimetre-wave and THz remote sensing, in: Terahertz Sensing Technology, Vol. 2, p. 1, edited by D.L. Woolard, W.R. Loerop, and M.S. Shur, World Scientific, New York, 2003. Google Scholar
[12] R.M. Woodward, “Terahertz technology in global homeland security, Proc. SPIE
5781, 22–31 (2005). Google Scholar
[13] D.L. Woolard, R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?, Proc. IEEE
93, 1722–1743 (2005). CrossrefGoogle Scholar
[14] H. Zhong, A. Redo-Sanchez, and X.C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system, Opt. Express
14, 9130–9141 (2006). PubMedCrossrefGoogle Scholar
[15] M. Tonouchi, “Cutting-edge terahertz technology, Nat. Photonics
1, 97–105 (2007). CrossrefGoogle Scholar
[16] D. Grbovic and G. Karunasiri, “Fabrication of bi-material MEMS detector arrays for THz imaging, Proc. SPIE
7311, 7311–08 (2009). Google Scholar
[17] P.V.V. Jayaweera, S.G. Matsik, A.G.U. Perera, Y. Paltiel, A. Sher, A. Raizman, H. Luo, and H.C. Liu, “GaSb homo-junctions for far-infrared (terahertz) detection, Appl. Phys. Lett.
90, 111109 (2007). CrossrefGoogle Scholar
[18] S. Komiyama, O. Astafiev, V. Antonov, and T. Kutsuwa, “Single-photon detection of THz-waves using quantum dots, Microelectron. Eng.
63, 173–178 (2002). CrossrefGoogle Scholar
[19] Y. Kawano, T. Fuse, S. Toyokawa, T. Uchida, and K. Ishibashi, “Terahertz photon-assisted tunneling in carbon nanotube quantum dots, J. Appl. Phys.
103, 034307 (2008). CrossrefGoogle Scholar
[20] M. Tarasov and L. Kuz’min, “Concept of a mixer based on a cold-electron bolometer, JETP Lett.
81, 538–541 (2005). CrossrefGoogle Scholar
[21] M. Shur, “Terahertz technology: devices and applications, Proc ESSDERC’05, 13–22, Grenoble, 2005. Google Scholar
[22] A. Lisauskas, D. Glaab, H.G. Roskos, E.U. Oejefors, and R. Pfeiffer, “Terahertz imaging with Si MOSFET focal-plane arrays, Proc. SPIE
7215, 72150J (2009). Google Scholar
[23] J. Grade, P. Haydon, and D. van der Weide, “Electronic terahertz antennas and probes for spectroscopic detection and diagnostics, Proc. IEEE
95, 1583–1591 (2007). CrossrefGoogle Scholar
[24] H.M. Manohara, E.W. Wong, E. Schlecht, B.D. Hunt, and P.H. Siegel, “Carbon nanotube Schottky diodes using Ti-Schottky and Pt-ohmic contacts for high frequency applications, Nano. Lett.
5, 1469–1474 (2005). CrossrefGoogle Scholar
[25] M. Tarasov, J. Svensson, J. Weis, L. Kuzmin, and E. Campbell, “Carbon nanotube based bolometers, JETP Lett.
84, 267–270 (2006). CrossrefGoogle Scholar
[26] V.N. Dobrovolsky, F.F. Sizov, Y.E. Kamenev, and A.B. Smirnov, “Ambient temperature or moderately cooled hot electron bolometer for mm and sub-mm regions, Opto-Electron. Rev.
16, 172–178 (2008). Google Scholar
[27] G. Chattopadhyay, “Future of heterodyne receivers at submillimeter wavelengths, Digest IRMMW-THz-2005 Conf., 461–462 (2005). Google Scholar
[28] R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kuerner, “Short-range ultra-broadband terahertz communications: concept and perspectives, IEEE Antenna and Propag. Magazine
49, 24–39 (2007). Google Scholar
[29] A.H. Lettington, I.M. Blankson, M. Attia, and D. Dunn, “Review of imaging architecture, Proc. SPIE
4719, 327–340 (2002). Google Scholar
[30] L. Kuzmin, “Optimal cold-electron bolometer with a super-conductor-insulator-normal tunnel junction and an Andreev contact, 17th Int. Symp. Space THz Techn., 183–186, 10–12 May, Paris, 2006. Google Scholar
[31] T.L. Hwang, S.E. Scharz, and D.B. Rutledge, “Microbolometers for infrared detection, Appl. Phys. Lett.
34, 773–776 (1979). CrossrefGoogle Scholar
[32] E.N. Grossman and A.J. Miller, “Active millimeter-wave imaging for concealed weapons detection, Proc. SPIE
5077, 62–70 (2003). Google Scholar
[33] W. Knap, F. Teppe, A. El Fatimy, N. Dyakonova, S. Boubanga, D. Coquillat, C. Gaquiere, A. Shchepetov, and S. Bollaert, “Room temperature detection and emission of terahertz radiation by plasma oscillations in nanometer size transistors, Digest IRMMW-THz-2007 Conf., 998–999 (2007). Google Scholar
[34] D. Leisawitz, W.C. Danchi, M.J. DiPirro, L.D. Feinberg, D.Y. Gezari, M. Hagopian, W.D. Langer, J.C. Mather, S.H. Moseley, M. Shao, R.F. Silverberg, J.G. Staguhn, M.R Swain, H.W. Yorke, and X. Zhang, “Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers, Proc. SPIE
4013, 36–46 (2000). Google Scholar
[35] I.I. Taubkin and M.A. Trishenkov, “Information capacity of electronic vision systems, Infrared Phys. Techn.
37, 675–693 (1996). CrossrefGoogle Scholar
[36] F. Sizov, Photoelectronics for Vision Systems in Invisible Spectral Ranges, Akademperiodika, Kiev, 2008. (in Russian) Google Scholar
[37] P.L. Richards, “Cosmic microwave background experiments — past, present and future, Digest IRMMW-THz-2007 Conf., 12–15, Cardiff, 2007. Google Scholar
[38] S. Hargreaves and R.A. Lewis, “Terahertz imaging. Materials and methods, J. Mater. Sci.: Mater. El.
18, S299–S303 (2007). CrossrefGoogle Scholar
[39] N. Karpowicz, H. Zhong, J. Xu, K.I. Lin, J.S. Hwang, and X.C. Zhang, “Nondestructive sub.THz imaging, Proc. SPIE
5727, 132–142 (2005). Google Scholar
[40] A. Dobroiu, M. Yamashita, Y.N. Ohshima, Y. Morita, C. Otani, and K. Rawase, “Terahertz imaging system based on a backward oscillator, Appl. Opt.
43, 5637–5646 (2004). CrossrefGoogle Scholar
[41] A.W.M. Lee, Q. Qin, S. Kumar, B.S. Williams, Q. Hu, and J.L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 m), Appl. Phys. Lett.
89, 141125 (2006). CrossrefGoogle Scholar
[42] B.A. Knyazev, M.A. Dem’yanenko, and D.G. Esaev, “Terahertz imaging with a 160×120 pixel microbolometer 90.fps camera, Digest IRMMW-THz-2007 Conf., 360–361, Cardiff, 2007. Google Scholar
[43] M.A. Kinch and B.V. Rollin, “Detection of millimetre and sub.millimetre wave radiation by free carrier absorption in a semiconductor, Brit. J. Appl. Phys.
14, 672–676 (1963). Google Scholar
[44] Y. Nakagawa and H. Yoshinaga, “Characteristics of high-sensitivity Ge bolometer, Jpn. J. Appl. Phys.
9, 125–131 (1970). Google Scholar
[45] R. Padman, G.J. White, R. Barker, D. Bly, N. Johnson, H. Gibson, M. Griffin, J.A. Murphy, R. Prestage, J. Rogers, and A. Scivett, “A dual-polarization InSb receiver for 461/492 GHz, Int. J. Infrared Milli. Waves
13, 1487–1513 (1992). Google Scholar
[46] J.E. Huffman, “Infrared detectors for 2 to 220 μm astronomy, Proc. SPIE
2274, 157–169 (1995). Google Scholar
[47] M. Kenyon, P.K. Day, C.M. Bradford, J.J. Bock, and H.G. Leduc, “Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy, Proc. SPIE
6275, 627508 (2006). Google Scholar
[48] A.D. Turner, J.J. Bock, J.W. Beeman, J. Glenn, P.C. Hargrave, V.V. Hristov, H.T. Nguyen, F. Rahman, S. Sethuraman, and A.L. Woodcraft, “Silicon nitride micromesh bolometer array for submillimeter astrophysics, Appl. Optics
40, 4921–4932 (2001). CrossrefGoogle Scholar
[49] B.S. Karasik, D. Olaya, J. Wei, S. Pereverzev, M.E. Gershenson, J.H. Kawamura, W.R. McGrath, and A.V. Sergeev, “Record-low NEP in hot-electron titanium nanobolometers, IEEE T. Appl. Supercon.
17, 293–297 (2007). CrossrefGoogle Scholar
[50] P.L. Richards, “Bolometers for infrared and millimeter waves, J. Appl. Phys.
76, 1–24 (1994). CrossrefGoogle Scholar
[51] D.J. Benford, “Transition edge sensor bolometers for CMB polarimetry, cmbpol.uchicago.edu/.../cmbpol_technologies_ benford_jcps_4.pdf. Google Scholar
[52] H.W. Hübers, S.G. Pavlov, K. Holldack, U. Schade, and G. Wustefeld, “Long wavelength response of unstressed and stressed Ge:Ga detectors, Proc. SPIE
6275, 627505 (2008). Google Scholar
[53] A. Poglitsch, R.O. Katterloher, R. Hoenle, J.W. Beeman, E.E. Haller, H. Richter, U. Groezinger, N.M. Haegel, and A. Krabbe, “Far-infrared photoconductors for Herschel and SOFIA, Proc. SPIE
4855, 115–128 (2003). Google Scholar
[54] E.E. Haller, M.R. Hueschen, and P.L. Richards, “Ge:Ga photoconductors in low infrared backgrounds, Appl. Phys. Lett.
34, 495–497 (1979). CrossrefGoogle Scholar
[55] N. Kopeika, A System Engineering Approach to Imaging, SPIE Optical Eng. Press, Bellingham, 1998. Google Scholar
[56] G.M. Voellmer, C.A. Allen, M.J. Amato, S.R. Babu, A.E. Bartels, D.J. Benford, R.J. Derro, C.D. Dowell, D.A. Harper, M.D. Jhabvala, S.H. Moseley, T. Rennick, P.J. Shirron, W.W. Smith, and J.G. Staguhn, “Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II, Proc. SPIE
4855, 63–72 (2003). Google Scholar
[57] J.G. Staguhn, D.J. Benford, F. Pajot, T.J. Ames, J.A. Chervenak, E.N. Grossman, K.D. Irwin, B. Maffei, S.H. Moseley, T.G. Phillips, C.D. Reintsema, C. Rioux, R.A. Shafer, and G.M. Voellmer, “Astronomical demonstration of superconducting bolometer arrays, Proc. SPIE
4855, 100–107 (2003). Google Scholar
[58] P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging. Instruments, Int. J. Infrared Milli. Waves
27, 631–656 (2006). Google Scholar
[59] H.W. Hübers, “Terahertz heterodyne receivers, IEEE J. Sel. Top. Quant. Electron
14, 378–391 (2008). CrossrefGoogle Scholar
[60] C.M. Bradford, B.J. Naylor, J. Zmuidzinas, J.J. Bock, J. Gromke, H. Nguyen, M. Dragovan, M. Yun, L. Earle, J. Glenn, H. Matsuhara, P.A.R. Ade, and L. Duband, “WaFIRS: A waveguide far-IR spectrometer: Enabling spectroscopy of high-z galaxies in the far-IR and submillimeter, Proc. SPIE
4850, 1137–1148 (2003). Google Scholar
[61] J.C. Mather, E.S. Cheng, D.A. Cottingham, R.E. Eplee, D.J. Fixsen, T. Hewagama, R.B. Isaacman, K.A. Jensen, S.S. Meyer, P.D. Noerdlinger, S.M. Read, L.P. Rosen, R.A. Shafer, E.L. Wright, C.L. Bennett, N.W. Boggess, M.G. Hauser, T. Kelsall, S.H. Moseley, R.F. Silverberg, G.F. Smoot, R. Weiss, and D.T. Wilkinson, “Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument, Astrophys. J.
420, 439–444 (1994). CrossrefGoogle Scholar
[62] J. Dunkley, A. Amblard, C. Baccigalupi, M. Betoule, D. Chuss, A. Cooray, J. Delabrouille, C. Dickinson, G. Dobler, J. Dotson, H.K. Eriksen, D. Finkbeiner, D. Fixsen, P. Fosalba, A. Fraisse, C. Hirata, A. Kogut, J. Kristiansen, C. Lawrence, A.M. Magalhaes, M.A. Miville-Deschenes, S. Meyer, A. Miller, S.K. Naess, L. Page, H.V. Peiris, N. Phillips, E. Pierpaoli, G. Rocha, J.E. Vaillancourt, and L. Verde, “A program of technology development and of sub-orbital observations of the cosmic microwave background polarization leading to and including a satellite mission, A Report for the Astro2010 Decadal Committee on Astrophysics, April, 2009. Google Scholar
[63] D.P. Neikirk, D.B. Rutledge, and M.S. Mucha, “Far-infrared imaging antenna arrays, Appl. Phys. Lett.
40, 203–205 (1982). CrossrefGoogle Scholar
[64] E.R. Brown, A.W.M. Lee, B.S. Navi, and J.E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region, Microw. Opt. Techn. Let.
48, 524–529 (2006). CrossrefGoogle Scholar
[65] J. Grade, P. Haydon, and D. van der Weide, “Electronic terahertz antennas and probes for spectroscopic detection and diagnostics, Proc. IEEE
95, 1583–1591 (2007). CrossrefGoogle Scholar
[66] E.R. Brown, K.A. McIntosh, F.W. Smith, K.B. Nichols, M.J. Manfra, C.L. Dennis, and J.P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer, Appl. Phys. Lett.
64, 3311–3313 (1994). CrossrefGoogle Scholar
[67] M. Tani, K.S. Lee, and X.C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs based photo-conductive antenna using 1.55 μm probe, Appl. Phys. Lett.
77, 1396–1398 (2000). Google Scholar
[68] M. Suzukia and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses, Appl. Phys. Lett.
86, 163504 (2005). Google Scholar
[69] J. Zhang, Y. Hong, S.L. Braunstein, and K.A. Shore, “Terahertz pulse generation and detection with LT-GaAs photo-conductive antenna, IEE P. Optoelectron.
151, 98–101 (2004). CrossrefGoogle Scholar
[70] H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices, Appl. Phys. Lett.
92, 163502 (2008). CrossrefGoogle Scholar
[71] B.B. Hu and M.C. Nuss, “Imaging with terahertz waves, Opt. Lett.
20, 1716–1718 (1995). CrossrefGoogle Scholar
[72] B. Fischer, M. Hoffmann, and H. Helm, “Terahertz time-domain spectroscopy and imaging of artificial RNA, Opt. Express
13, 5205–5215 (2005). CrossrefGoogle Scholar
[73] N. Karpowicz, H. Zhong, J. Xu, K.I. Lin, J.S. Hwang, and X.C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging, Semicond. Sci. Tech.
20, S293–S299 (2005). CrossrefGoogle Scholar
[74] T. Matsui, A. Agrawal, A. Nahata, R. Menon, and Z.V. Vardeny, “Terahertz time-domain spectroscopy studies of subwavelength hole arrays in metallic films, Physica B: Condensed Matter
394, 363–367 (2007). Google Scholar
[75] V.G. Bozhkov, “Semiconductor detectors, mixers, and frequency multipliers for the terahertz band, Radiophys. Quantum. El.
46, 631–656 (2003). CrossrefGoogle Scholar
[76] T.W. Crowe, R.J. Mattauch, H.P. Roser, W.L. Bishop, W.C.B. Peatman, and X. Liu, “GaAs Schottky diodes for THz mixing applications, Proc. IEEE
80, 1827–1841 (1992). CrossrefGoogle Scholar
[77] Microwave Semiconductor Devices and Their Circuit Applications, edited by H.A. Watson, McGraw-Hill, New York, 1969. Google Scholar
[78] E.J. Becklake, C.D. Payne, and B.E. Pruer, “Submillimetre performance of diode detectors using Ge, Si and GaAs, J. Phys. D: Appl. Phys.
3, 473–481 (1970). Google Scholar
[79] H.-P. Roeser, H.-W. Hubers, E. Brundermann, and M.F. Kimmitt, “Observation of mesoscopic effects in Schottky diodes at 300 K when used as mixers at THz frequencies, Semicond. Sci. Tech.
11, 1328–1332 (1996). Google Scholar
[80] I. Mehdi, G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, F. Maiwald, and A. Maestrini, “THz multiplier circuits, IEEE MTT-S Intern. Microwave Symp. Digest, San.Francisco, 341–344 (2006). Google Scholar
[81] P.H. Siegel, R.P. Smith, S. Martin, and M. Gaidis, “2.5 THz GaAs monolithic membrane.diode mixer, IEEE T. Microw. Theory Techn
47, 596–604 (1999). Google Scholar
[82] D.G. Pavel’ev, N.V. Demarina, Yu.I. Koshurinov, A.P. Vasil’ev, E.S. Semenova, A.E. Zhukov, and V.M. Ustinov, “Characteristics of planar diodes on the basis of highly doped GaAs/AlAs superlattices within the THz range of frequency, Semiconductors
38, 1105–1110 (2004). CrossrefGoogle Scholar
[83] K.S. Yngvesson, K. Fu, B. Fu, R. Zannoni, J. Nicholson, S.H. Adams, A. Ouarraoui, J. Donovan, and E. Polizzi, “Experimental detection of terahertz radiation in bundles of single wall carbon nanotubes, 19
thInt. Symp. Space THz Techn., 304–313, Groningen, April 2008. Google Scholar
[84] P. Shiktorov, E. Starikov, V. Gružinskis, S. Pérez, T. González, L. Reggiani, L. Varani, and J.C. Vaissičre, “Theoretical investigation of Schottky-barrier diode noise performance in external resonant circuits, Semicond. Sci. Tech.
21, 550–557 (2006). CrossrefGoogle Scholar
[85] V.I. Piddyachiy, V.M. Shulga, A.M. Korolev, and V.V. Myshenko, “High doping density Schottky diodes in the 3 mm wavelength cryogenic heterodyne receiver, Int. J. In. frared Milli. Wavers
26, 1307–1315 (2005). Google Scholar
[86] E.H. Rhoderick, Metal-Semiconductor Contacts, Clarendon Press, Oxford, 1978. Google Scholar
[87] J.A. Copeland, “Diode edge effects on doping profile measurements, IEEE Trans. Electron. Dev.
17, 404–407 (1970). CrossrefGoogle Scholar
[88] F. Maiwald, F. Lewen, B. Vowinkel, W. Jabs, D.G. Paveljev, M. Winnerwisser, and G. Winnerwisser, “Planar Schottky diode frequency multiplier for molecular spectroscopy up to 1.3 THz, IEEE Microw. Guided Wave L.
9, 198–200 (1999). Google Scholar
[89] G. Goltsman, “Hot electron bolometer mixers, ultrafast detectors and single photon counters for terahertz frequency range, www.univ.montp2.fr/~terapole/GRE/1Juin2007/ Google Scholar
[90] Spectroscopic Techniques for Far-infrared, Submillimeter and Millimeter Waves, edited by D.H. Martin, North-Holland, Amsterdam, 1967. Google Scholar
[91] V.V. Parshin, “The precise microwave resonator spectroscopy of gases and condensed media, Proc. 6th Int. Symp. Physics and Engineering of Millimeter and SubMillimeter Waves (MSMW’07), 30–35, Kharkov, 2007. Google Scholar
[92] H. Ito, F. Nakajima, T. Ohno, T. Furuta, T. Nagatsuma, and T. Ishibashi, “InP-based planar-antenna-integrated Schottky-barrier diode for millimeter- and sub-millimeter-wave detection, Jpn. J. Appl. Phys.
47, 6256–6261 (2008). Google Scholar
[93] C. Wilson, L. Frunzio, and D. Prober, “Time-resolved measurements of thermodynamic fluctuations of the particle number in a nondegenerate Fermi gas, Phys. Rev. Lett.
87, 067004 (2001). CrossrefGoogle Scholar
[94] C.A. Mears, Q. Hu, P.L. Richards, A.H. Worsham, D.E. Prober, and A.V. Raisanen, “Quantum limited heterodyne detection of millimeter waves using super conducting tantalum tunnel junctions, Appl. Phys. Lett.
57, 2487–2489 (1990). CrossrefGoogle Scholar
[95] E. Burstein, D.N. Langenberg, and B.N. Taylor, “Superconductors as quantum detectors for microwave and sub-millimeter radiation, Phys. Rev. Lett.
6, 92–94 (1961). CrossrefGoogle Scholar
[96] R. Schoelkopf, S. Moseley, C. Stachle, P. Wahlgren, and P. Delsing, “A concept for a sub-millimeter-wave single-photon counter, Trans. Appl. Supercond.
9, 2935–2939 (1999). CrossrefGoogle Scholar
[97] Ch. Otani, S. Ariyoshi, H. Matsuo, T. Morishima, M. Yamashita, K. Kawase, H. Satoa, and H.M. Shimizu, “Terahertz direct detector using superconducting tunnel junctions, Proc. SPIE
5354, 86–93 (2004). Google Scholar
[98] J.R. Tucker and M.J. Feldman, “Quantum detection at millimeter wavelength, Rev. Mod. Phys.
57, 1055–1113 (1985). CrossrefGoogle Scholar
[99] A. Peacock, P. Verhoeve, N. Rando, A. Van Dordrecht, B. Taylor, C. Erd, M. Perryman, R. Venn, J. Howlett, D. Goldie, J. Lumley, and M. Wallis, “Single optical photon detection with a superconducting tunnel junction, Nature
381, 135–137 (1996). Google Scholar
[100] P. Verhoeve, N. Rando, A. Peacock, D. Martin, and R. den Hartog, “Superconductinjg tunnel junctions as photoncounting imaging spectrometers from the optical to the X-ray band, Opt. Eng.
41, 1170–1184 (2002). CrossrefGoogle Scholar
[101] H. Matsuo, M. Takeda, T. Noguchi, S. Ariyoshi, and H. Akahori, “Development of sub-millimeter-wave camera for the Atacama sub-millimeter telescope experiment, Proc. SPIE
4015, 228–236 (2000). Google Scholar
[102] H. Matsuo, H. Nagata, Y. Mori, J. Kobayashi, T. Okaniwa, T. Yamakura, C. Otani, and S. Ariyoshi, “Performance of SIS photon detectors for superconductive imaging submillimeter-wave camera (SISCAM), Proc. SPIE
6275, 627504 (2006). Google Scholar
[103] A. Karpov, D. Miller, F. Rice, J.A. Stern, B. Bumble, H.G. LeDuc, and J. Zmuidzinas, “Low noise SIS mixer for far infrared radio astronomy, Proc. SPIE
5498, 616–621 (2004). Google Scholar
[104] J.A. Stern, B. Bumble, H.G. LeDuc, J.W. Kooi, and J. Zmuidzinas, “Fabrication and DC-characterization of NbTiN based SIS mixers for use between 600 and 1200 GHz, Proc. 10
thIntern. Symp. Space Terahertz Techn. 305–313 (1999). Google Scholar
[105] S.V. Shitov, A.V. Markov, B.D. Jakson, A.M. Baryshev, N.N. Iosad, J.R. Gao, and T.M. Klapwijk, “THz low-noise SIS mixer with a double-dipole antenna, Techn. Phys.
47, 1152–1157 (2002). CrossrefGoogle Scholar
[106] H. Van de Stadt, J. Mess, Z. Barber, M. Blamire, P. Dieleman, and Th. De Graauw, “Sub-mm heterodyne mixing using NbCN/Nb SIS tunnel junctions, Int. J. Infrared Milli. Waves
17, 91–104 (1996). Google Scholar
[107] J. Kawamura, J. Chen, D. Miller, J. Kooi, and J. Zmuidzinas, “Low noise submillimeter wave NbTiN superconducting tunnel junction mixers, Appl. Phys. Lett.
75, 4013–4015 (1999). CrossrefGoogle Scholar
[108] G.N. Gol’tsman, “Hot electron bolometric mixers: new terahertz technology, Infrared Phys. Techn.
40, 199–206 (1999). Google Scholar
[109] R. Blundell and K.H. Gundlach, “A quasioptical SIN mixer for 230 GHz frequency range, Int. J. Infrared Milli. Waves
8, 1573–1579 (1987). Google Scholar
[110] M. Nahum and J. Martinis, “Ultrasensitive hot-electron microbolometer, Appl. Phys. Lett.
63, 3075–3077 (1993). CrossrefGoogle Scholar
[111] D. Sandgren, D. Chouvaev, M. Tarasov, and L. Kuzmin, “Fabrication and optical characterization of the normal metal hot-electron microbolometer with Andreev mirrors, Physica C
372, 444–447 (2002). Google Scholar
[112] D.R. Schmidt, K.W. Lehnert, A.M. Clark, W.D. Duncan, K.D. Irwin, N. Miller, and J.N. Ullom, “A superconductor-insulator-normal metal bolometer with microwave read-out suitable for large-format arrays, Appl. Phys. Lett.
86, 053505 (2005). CrossrefGoogle Scholar
[113] D. Golubev and L. Kuzmin, “Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-super-conductor tunnel junction, J. Appl. Phys.
89, 6464–6472 (2001). CrossrefGoogle Scholar
[114] L. Kuzmin, I. Devyatov, and D. Golubev, “Cold-electron bolometer with electronic microrefrigeration and general noise analysis, Proc. SPIE
3465, 193–199 (1998). Google Scholar
[115] M. Tarasov and L. Kuz’min, “Concept of a mixer based on a cold-electron bolometer, JETP Lett.
81, 538–541 (2005). CrossrefGoogle Scholar
[116] L. Kuzmin, “Array of cold-electron bolometers with SIN tunnel junctions and JFET readout for cosmology experiments, J. Phys.: Confer. Ser.
97, 012310 (2008). CrossrefGoogle Scholar
[117] E.H. Putley, “Thermal detectors, in Optical and Infrared Detectors, pp. 71–100, edited by R.J. Keyes, Springer, Berlin, 1977. Google Scholar
[118] A. Rogalski, Infrared Detectors, Gordon and Breach, Amsterdam, 2000. Google Scholar
[119] J.C. Mather, “Bolometers: ultimate sensitivity, optimization, and amplifier coupling, Appl. Optics
23, 584–588 (1984). CrossrefGoogle Scholar
[120] G. Goltsman, O. Minaeva, A. Korneev, M. Tarkhov, I. Rubtsova, A. Divochiy, I. Milostnaya, G. Chulkova, N. Kaurova, B. Voronov, D. Pan, A. Cross, A. Pearlman, I. Komissarov, W. Slysz, M. Wegrzecki, P. Grabiec, and R. Sobolewski, “Middle-infrared to visible-light ultrafast superconducting single-photon detector, IEEE T. Appl. Supercon.
17, 246–251 (2007). CrossrefGoogle Scholar
[121] Yu.B. Vasilyev, A.A. Usikova, N.D. Il’inskaya, P.V. Petrov, and Yu.L. Ivanov, “Highly sensitive submillimeter InSb photodetectors, Semiconductors
42, 1234–1236 (2008). CrossrefGoogle Scholar
[122] K. Seeger, Semiconductor Physics, Springer, Wien, 1973. Google Scholar
[123] S.M. Smith, M.J. Cronin, R.J. Nicholas, M.A. Brummell, J.J. Harris, and C.T. Foxon, “Millimeter and submillimeter detection using Ga1−xAlxAs/GaAs heterosructures, Int. J. Infrared Milli. Waves
8, 793–802 (1987). Google Scholar
[124] J.X. Yang, F. Agahi, D. Dai, C.F. Musante, W. Grammer, K.M. Lau, and K.S. Yngvesson, “Wide-bandwidth electron bolometric mixers: a 2DEG prototype and potential for low-noise THz receivers, IEEE T. Microw. Theory Techn.
41, 581–589 (1993). CrossrefGoogle Scholar
[125] G.N. Gol’tsman and K.V. Smirnov, “Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures, JETP Lett.
74, 474–479 (2001). Google Scholar
[126] A.A. Verevkin, N.G. Ptitsina, K.V. Smirnov, G.N. Gol’tsman, E.M. Gershenzon, and K.S. Ingvesson, “Direct measurements of energy relaxation times on an AlGaAs/GaAs heterointerface in a range 4.2–50 K, JETP Lett.
64, 404–409 (1996). CrossrefGoogle Scholar
[127] K.S. Il’in, M. Lindgren, M. Currie, A.D. Semenov, G.N. Gol’tsman, R. Sobolewski, S.I. Cherednichenko, and E.M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors, Appl. Phys. Lett.
76, 2752–2754 (2000). Google Scholar
[128] A. Semenov, G.N. Gol’tsman, and R. Sobolewski, “Hot-electron effect in semiconductors and its applications for radiation sensors, LLE Review
87, 134–143 (2001). Google Scholar
[129] E.M. Gershenzon, M.E. Gershenzon, G.N. Gol’tsman, A.M. Lyul’kin, A.D. Semenov, and A.V. Sergeev, “Electron-phonon interaction in ultrathin Nb films, Sov. Phys. JETP
70, 505–511 (1990). Google Scholar
[130] E.M. Gershenson, M.E. Gershenson, G.N. Goltsman, B.S. Karasik, A.M. Lyul’kin, and A.D. Semenov, “Ultra-fast superconducting electron bolometer, J. Tech. Phys. Lett.
15, 118–119 (1989). Google Scholar
[131] Y. Gousev, G. Gol’tsman, A. Semenov, E. Gershenzon, R. Nebosis, M. Heusinger, and K. Renk, “Broad-band ultrafast superconducting NbN detector for electromagnetic-radiation, J. Appl. Phys.
75, 3695–3697 (1994). CrossrefGoogle Scholar
[132] A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors, Appl. Phys. Lett.
84, 5338–5340 (2004). CrossrefGoogle Scholar
[133] G.N. Gol’tsman, Yu.B. Vachtomin, S.V. Antipov, M.I Finkel, S.N. Maslennikiv, K.V. Smirnov, S.L. Poluakov, S.I. Svechnikov, N.S. Kaurova, E.V. Grishina, and B.M. Voronov, “NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers, Proc. SPIE
5727, 95–106 (2005). Google Scholar
[134] J.W. Kooi, J.J.A. Baselmans, J.R. Gao, T.M. Klapwijk, M. Hajenius, P. Dieleman, A. Baryshev, and G. de Lange, “IF impedance and mixer gain of hot-electron bolometers, J. Appl. Phys.
101, 044511 (2007). CrossrefGoogle Scholar
[135] J. Mees, M. Nahum, and P. Richard, “New designs for antenna-coupled superconducting bolometers, Appl. Phys. Lett.
59, 2329–2331 (1991). CrossrefGoogle Scholar
[136] J.J.A. Baselmans, M. Hajenius, J.R. Gao, T. M. Klapwijk, P.A.J. de Korte, B. Voronov, and G. Gol’tsman, “Doubling of sensitivity and bandwidth in phonon cooled hot electron bolometer mixers, Appl. Phys. Lett.
84, 1958–1960 (2004). CrossrefGoogle Scholar
[137] D.E. Prober, “Superconducting terahertz mixer using a transition-edge microbolometer, Appl. Phys. Lett.
62, 2119–2121 (1993). CrossrefGoogle Scholar
[138] P.J. Burke, R.J. Schoelkopf, D. E. Prober, A. Skalare, B.S. Karasik, M.C. Gaidis, W.R. McGrath, B. Bumble, and H.G. LeDuc, “Spectrum of thermal fluctuation noise in diffusion and phonon cooled hot-electron mixers, Appl. Phys. Lett.
72, 1516–1518 (1998). CrossrefGoogle Scholar
[139] D. Wilms Floet, E. Miedema, T.M. Klapwijk, and J.R. Gao, “Hotspot mixing: A framework for heterodyne mixing in superconducting hot-electron bolometers, Appl. Phys. Lett.
74, 433–435 (1999). Google Scholar
[140] S. Cherednichenko, V. Drakinskiy, T. Berg, P. Khosropanah, and E.L. Kollberg, “Hot-electron bolometer terahertz mixers for the Herschel space observatory, Rev. Sci. Instrum.
79, 034501 (2008). CrossrefGoogle Scholar
[141] A. Semenov, H. Richter, K. Smirnov, B. Voronov, G. Gol’tsman, and H.W. Hubers, “The development of terahertz superconducting hot-electron bolometric mixers, Supercond. Sci. Tech.
17, S436–S439 (2004). Google Scholar
[142] E.L. Kollberg and K.S. Yngvesson, “Quantum-noise theory for terahertz hot electron bolometer mixer, IEEE T. Microw. Theory Techn.
54, 2077–2089 (2006). CrossrefGoogle Scholar
[143] G. Gol’tsman, A. Korneev, M. Tarhov, V. Seleznev, A. Divochiy, O. Minaeva, N. Kaurova, B. Voronov, O. Okunev, G. Chulkova, I. Milostnaya, and K. Smirnov, “Middle-infra-red ultrafast superconducting single photon detector, Digest IRMMW-THz-2007 Conf., 115–116, Cardiff, 2007. Google Scholar
[144] A.J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range, Supercond. Sci. Tech.
13, 1235–1245 (2000). CrossrefGoogle Scholar
[145] M. Lindgren, M. Currie, C. Williams, T.Y. Hsiang, P.M. Fauchet, R. Sobolewsky, S.H. Moffat, R.A. Hughes, J.S. Preston, and F.A. Hegmann, “Intrinsic picosecond response times of Y-Ba-Cu-O superconducting photoresponse, Appl. Phys. Lett.
74, 853–855 (1999). CrossrefGoogle Scholar
[146] J.-C. Villégier, A.F. Dégardin, B. Guillet, F. Houzé, A.J. Kreisler, and M. Chaubet, “Fabrication of high-Tc superconducting hot electron bolometers for terahertz mixer applications, Proc. SPIE
5727, 88–94 (2005). Google Scholar
[147] V.V. Shirotov and Yu.Ya. Divin, “Frequency-selective Josephson detector: Power dynamic range at subterahertz frequencies, Techn. Phys. Lett.
30, 522–524 (2004). CrossrefGoogle Scholar
[148] M.V. Lyatti, D.A. Tkachev, and Yu.Ya. Divin, “Signal and noise characteristics of a terahertz frequency-selective YBa2Cu3O7−δ Josephson detector, Techn. Phys. Lett.
32, 860–862 (2006). Google Scholar
[149] K.D. Irwin and G.C. Hilton, “Transition-edge sensors, in Cryogenic Particle Detection, pp. 63–149, edited by C. Enss, Springer, Berlin, 2005. Google Scholar
[150] D.J. Benford and S.H. Moseley, “Astronomy applications of superconducting transition edge sensor bolometer arrays, asd.gsfc.nasa.gov/Dominic.Benford/Benford_Detectors_Paper.pdf. Google Scholar
[151] A.D. Brown, D. Chuss, V. Mikula, R. Henry, E. Wollack, Y. Zhao, G.C. Hilton, and J.A. Chervenak, “Auxiliary components for kilopixel transition edge sensor arrays, Solid State Electron.
52, 1619–1624 (2008). Google Scholar
[152] K.D. Irwin, “An application of electrothermal feedback for high resolution cryogenic particle detection, Appl. Phys. Lett.
66 1998–2000 (1995). Google Scholar
[153] D. Olaya, J. Wei, S. Pereverzev, B.S. Karasik, J.H. Kawamura, W.R. McGrath, A.V. Sergeev, and M.E. Gershenson, “An ultrasensitive hot-electron bolometer for low-background SMM applications, Proc. SPIE
6275, 627506 (2006). Google Scholar
[154] C.L. Kuo, J.J. Bock, J.A. Bonetti, J. Brevik, G. Chattopadthyay, P.K. Day, S. Golwala, M. Kenyon, A.E. Lange, H.G. LeDuc, H. Nguyen, R.W. Ogburn, A. Orlando, A. Transgrud, A. Turner, G. Wang, and J. Zmuidzinas, “Antenna-cupled TES bolometer arrays for CMB polarimetry, Roc. SPIE
7020, 70201I (2008). Google Scholar
[155] W. Duncan, W.S. Holland, M.D. Audley, M. Cliffe, T. Hodson, B.D. Kelly, X. Gao, D.C. Gostick, M. MacIntosh, H. McGregor, T. Peacocke, K.D. Irwin, G.C. Hilton, S.W. Deiker, J. Beier, C.D. Reintsema, A.J. Walton, W. Parkes, T. Stevenson, A.M. Gundlach, C. Dunare, and P.A.R. Ade, “SCUBA-2: Developing the detectors, Proc. SPIE
4855, 19–29 (2003). Google Scholar
[156] S. Lee, J. Gildemeister, W. Holmes, A. Lee, and P. Richards, “Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK, Appl. Optics
37, 3391–3397 (1998). CrossrefGoogle Scholar
[157] M.D. Audley, D.M. Glowacka, D.J. Goldie, A.N. Lasenby, V.N. Tsaneva, S. Withington, P.K. Grimes, C.E. North, G. Yassin, L. Piccirillo, G. Pisano, P.A.R. Ade, G. Teleberg, K.D. Irwin, W.D. Duncan, C.D. Reintsema, M. Halpern, and E.S. Battistellik, “Tests of finline-coupled TES bolometers for CLOVER, Digest IRMMW-THz-2007 Conf., 180–181, Cardiff, 2007. Google Scholar
[158] H.F.C. Hoevers, A.C. Bento, M.P. Bruijn, L. Gottardi, M.A.N. Korevaar, W.A. Mels, and P.A.J. de Korte, “Thermal fluctuation noise in a voltage biased superconducting transition edge thermometer, Appl. Phys. Lett.
77, 4422–4424 (2000). CrossrefGoogle Scholar
[159] M. Kenyon, P. Day, C. Bradford, J. Bock, and H. Le Duc, “Electrical properties of background-limited membrane-isolation transition-edge sensing bolometers for far-IR-submillimeter direct-detection spectroscopy, J. Low Temp. Phys.
151, 112–118 (2008). CrossrefGoogle Scholar
[160] A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, “Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors, Appl. Phys. Lett.
89, 131926 (2006). Google Scholar
[161] W. Knap, V. Kachorowskii, Y. Deng, S. Rumyantsev, J.Q. Lu, R. Gaska, M.S. Shur, G. Simin, X. Hu, and M.A. Khan, C.A. Saylor, and L.C. Brunal, “Nonresonant detection of terahertz radiation in field effect transistors, J. Appl. Phys.
91, 9346–9353 (2002). CrossrefGoogle Scholar
[162] Y.M. Meziani, J. Lusakowski, N. Dyakonova, W. Knap, D. Seliuta, E. Sirmulis, J. Deverson, G. Valusis, F. Boeuf, and T. Skotnicki, “Non resonant response to terahertz radiation by submicron CMOS transistors, IEICE T. Electron.
E89-C, 993–998 (2006). Google Scholar
[163] G.C. Dyer, J.D. Crossno, G.R. Aizin, J. Mikalopas, E.A. Shaner, M.C. Wanke, J.L. Reno, and S.J. Allen, “A narrowband plasmonic terahertz detector with a monolithic hot electron bolometer, Proc. SPIE
7215, 721503 (2009). Google Scholar
[164] X.G. Peralta, S.J. Allen, M.C. Wanke, N.E. Harff, J.A. Simmons, M.P. Lilly, J.L. Reno, P.J. Burke, and J.P. Eisenstein, “Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors, Appl. Phys. Lett.
81, 1627–1630 (2002). CrossrefGoogle Scholar
[165] F. Teppe, M. Orlov, A. El Fatimy, A. Tiberj, W. Knap, J. Torres, V. Gavrilenko, A. Shchepetov, Y. Roelens, and S. Bollaert, “Room temperature tunable detection of subtera-hertz radiation by plasma waves in nanometer InGaAs transistors, Appl. Phys. Lett.
89, 222109 (2006). CrossrefGoogle Scholar
[166] R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, and W. Knap, Y. M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, and C. Fenouillet-Beranger, “Plasma wave detection of terahertz radiation by silicon field effects transistors. Responsivity and noise equivalent power, Appl. Phys. Lett.
89, 253511 (2006). CrossrefGoogle Scholar
[167] V.I. Gavrilenko, E.V. Demidov, K.V. Marem’yanin, S.V. Morozov, W. Knap, and J. Lusakowski, “Electron transport and detection of terahertz radiation in a GaN/AlGaN sub-micrometer field-effect transistor, Semiconductors
41, 232–234 (2007). CrossrefGoogle Scholar
[168] Y.M. Meziani, M. Hanabe, A. Koizumi, T. Otsuji, and E. Sano, “Self oscillation of the plasma waves in a dual grating gates HEMT device, Int. Conf. Indium Phosphide and Related Materials, 534–537, Matsue, 2007. Google Scholar
[169] A.M. Hashim, S. Kasai, and H. Hasegawa, “Observation of first and third harmonic responses in two-dimensional AlGaAs/GaAs HEMT devices due to plasma wave interaction, Superlattice Microst.
44, 754–760 (2008). CrossrefGoogle Scholar
[170] V. Ryzhii, A. Satou, I. Khmyrova, M. Ryzhii, T. Otsuji, V. Mitin, and M.S. Shur, “Plasma effects in lateral Schottky junction tunneling transit-time terahertz oscillator, J. Phys.: Conf. Ser.
38, 228–233 (2006). CrossrefGoogle Scholar
[171] M. Dyakonov and M.S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current, Phys. Rev. Lett.
71, 2465–2468 (1993). CrossrefGoogle Scholar
[172] M. Dyakonov and M. Shur, “Plasma wave electronics. Novel terahertz devices using two dimensional electron fluid, special issue on future directions in device science and technologies, IEEE T. Electron. Dev.
43, 1640–1646 (1996). CrossrefGoogle Scholar
[173] M. Shur and V. Ryzhii, “Plasma wave electronics, Int. J. High Speed Electr. Syst.
13, 575–600 (2003). Google Scholar
[174] A. Eguiluz, T.K. Lee, J.J. Quinn, and K.W. Chiu, “Interface excitations in metal-insulator-semiconductor structures, Phys. Rev.
B11, 4989–4993 (1975). CrossrefGoogle Scholar
[175] S. Kang, P.J. Burke, L.N. Pfeifer, and K.W. West, “Resonant frequency response of plasma wave detector, Appl. Phys. Lett.
89, 213512 (2006). CrossrefGoogle Scholar
[176] F. Teppe, A. El Fatimy, S. Boubanga, D. Seliuta, G. Valusis, B. Chenaud, and W. Knap, “Terahertz resonant detection by plasma waves in nanometric transistors, Acta Phys. Pol.
113, 815–820 (2008). Google Scholar
[177] D. Veksler, F. Teppe, A.P. Dmitriev, V.Yu. Kachorovskii, W. Knap, and M.S. Shur, “Detection of terahertz radiation in gated two-dimensional structures governed by dc current, Phys. Rev.
B73, 125328 (2006). CrossrefGoogle Scholar
[178] A.N. Akimov, V.G. Erkov, V.V. Kubarev, E.L. Molodtsova, A.E. Klimov, and V.N. Shumskyi, “Photosensitivity of Pb1-xSnxTe:In films in the terahertz region of the spectrum, Semiconductors
40, 164–168 (2006). Google Scholar
[179] A. Klimov, V. Shumsky, and V. Kubarev, “Terahertz sensitivity of Pb1−xSnxTe:In, Ferroelectrics
347, 111–119 (2007). Google Scholar
[180] D.R. Khokhlov, I.I. Ivanchik, S.N. Raines, D.M. Watson, and J.L. Pipher, “Performance and spectral response of Pb1−xSnxTe(In) far-infrared photodetectors, Appl. Phys. Lett.
76, 2835–2837 (2000). Google Scholar
[181] K.G. Kristovskii, A.E. Kozhanov, D.E. Dolzhenko, I.I. Ivanchik, D. Watson, and D.R. Khokhlov, “Photoconductivity of lead telluride-based doped alloys in the submillimeter wavelength range, Phys. Solid State
46, 122–124 (2004). Google Scholar
[182] A.G. Milnes, Deep Impurities in Semiconductors, Wiley Interscience, New York, 1973. Google Scholar
[183] M.-H. Du and S.B. Zhang, “DX centers in GaAs and GaSb, Phys. Rev.
B72, 075210 (2005). CrossrefGoogle Scholar
[184] B.A. Volkov, L.I. Ryabova, and D.R. Khokhlov, “Mixed-valence impurities in lead telluride-based solid solutions, Phys.-Usp.
45, 819–846 (2002). CrossrefGoogle Scholar
[185] Yu.G. Troyan, F.F. Sizov, and V.M. Lakeenkov, “Relaxation time and current instabilities in highly resistive PbTe:Ga single crystals, Ukr. J. Phys.
32, 467–471 (1987). Google Scholar
[186] S. Ahmad, K. Hoang, and S.D. Mahanti, “Ab initio study of deep defect states in narrow band-gap semiconductors: Group III impurities in PbTe, Phys. Rev. Lett.
96, 056403 (2006). CrossrefGoogle Scholar
[187] K. Hoang, S.D. Mahanti, and P. Jena, “Theoretical study of deep-defect states in bulk PbTe and in thin films, Phys. Rev.
B76, 115432 (2007). CrossrefGoogle Scholar
[188] T.L. Petrenko, S.V. Plyatsko, and F.F. Sizov, “Nature of group-III related deep centers in lead telluride based semiconductors: Ga doping from vapour phase, Proc. SPIE
7100, 710020 (2008). Google Scholar
Kommentare (0)