Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 18, Issue 2


Organic field-effect transistors

M. Małachowski / J. Żmija
Published Online: 2010-04-13 | DOI: https://doi.org/10.2478/s11772-010-0008-9


The paper reviews the recent year publications concerning organic field-effect transistors (OFETs). A lot of works have been performed to help understanding the structural and electrical properties of materials used to construct OFETs. It has been established that in partially ordered systems, the charge transport mechanism is thermally activated and field-assisted hopping transport and the hopping transport between disorder-induced localized states dominate over intrinsic polaronic hopping transport seen in organic single crystals. Many research attempts have been carried out on the design of air-stable organic semiconductors with a solution process which is capable of producing OFETs with excellent properties and good stability when subjected to multiple testing cycles and under continuous electrical bias. Recent experiments have demonstrated ambipolar channel conduction and light emission in conjugated polymer FETs. These achievements are the basis for construction of OLED based displays driven by active matrix consisting of OFETs.

Keywords: organic electronics; organic field-effect transistors; opto-electronic materials; information displays

  • [1] G. Horowitz, “Organic field-effect transistors”, Adv. Mater. 10, 365–377 (1998). http://dx.doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-UCrossrefGoogle Scholar

  • [2] G. Guillaud, J. Simon, and J.P. Germain, “Metallophthalocyanines gas sensors, resistors and field effect transistors”, Coordin. Chem. Rev. 178–180, 1433–1484 (1998). http://dx.doi.org/10.1016/S0010-8545(98)00177-5CrossrefGoogle Scholar

  • [3] A.R. Brown, C.P. Jarrett, D.M. de Leeuw, and M. Matters, “Field effect transistors made from solution -processed organic transistors”, Synthetic Met. 88, 37–55 (1997). http://dx.doi.org/10.1016/S0379-6779(97)80881-8CrossrefGoogle Scholar

  • [4] A. Facchetti, “Semiconductors for organic transistors”, Mater. Today 10, 28–37 (2007). http://dx.doi.org/10.1016/S1369-7021(07)70017-2CrossrefGoogle Scholar

  • [5] A. Salleo, “Charge transport in polymeric transistors”, Mater. Today 10, 38–45 (2007). http://dx.doi.org/10.1016/S1369-7021(07)70018-4CrossrefGoogle Scholar

  • [6] Y.D. Park, J.A. Lim, H.S. Lee, and K. Cho, “Interface engineering in organic transistors”, Mater. Today 10, 46–54 (2007). CrossrefGoogle Scholar

  • [7] J. Żmija, M.J. Małachowski, M. Wacławek, and K. Ścieżka, “Engineering of organic materials in electronics”, Chemia. Dydaktyka. Ekologia. Metrologia XI, No. 3/4, 15–30 (2006). (in Polish) Google Scholar

  • [8] J. Żmija, M.J. Małachowski, and J. Zieliński, “Progress in application of organic semiconductors in displays”, 5th Scientific Symposium, Proc. SPIE 82 7207-664-2, 41–59 (2006). (in Polish) Google Scholar

  • [9] N.F. Mott, Introductory talk; Conduction in noncrystalline materials, Cavendish Laboratory, Cambridge, available online 13 May (2003). Google Scholar

  • [10] C. Godet, “Variable range hopping revisited: the case of an exponential distribution of localized states”, J. Non-Cryst. Solids 299-302, 333–338 (2002). http://dx.doi.org/10.1016/S0022-3093(01)01008-0CrossrefGoogle Scholar

  • [11] M. Pope, “Electronic processes in organic solids”, Annu. Rev. Phys. Chem. 35, 613–655 (1984). http://dx.doi.org/10.1146/annurev.pc.35.100184.003145CrossrefGoogle Scholar

  • [12] L. Li, G. Meller, and H. Kosina, “Analytical conductivity model for doped organic semiconductors”, J. Appl. Phys. 101, 033716–4 (2007). http://dx.doi.org/10.1063/1.2472282CrossrefGoogle Scholar

  • [13] M.J. Małachowski, “HgSe thin-film transistors”, Phys. Stat. Sol. 14, K35–K37 (1966). http://dx.doi.org/10.1002/pssb.19660140133CrossrefGoogle Scholar

  • [14] S. Scheinert and G. Paasch, “Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors”, J. Appl. Phys. 105, 014509 (2009). http://dx.doi.org/10.1063/1.3058640CrossrefGoogle Scholar

  • [15] T. Lindner, G. Paasch, and S. Scheinert, “Operation and properties of ambipolar organic heterostructure field-effect transistors”, J. Appl. Phys. 101, 014502 (2007). http://dx.doi.org/10.1063/1.2402353CrossrefGoogle Scholar

  • [16] T. Umeda, S. Tokito, and D. Kumaki, “High-mobility and air-stable organic thin-film transistors with highly ordered semiconducting polymer films”, J. Appl. Phys. 101, 054517 (2007). http://dx.doi.org/10.1063/1.2711780CrossrefGoogle Scholar

  • [17] G. Paasch and S. Scheinert, „Space charge layers in organic field-effect transistors with Gaussian or exponential semiconductor density of states”, J. Appl. Phys., 101, 024514 (2007). http://dx.doi.org/10.1063/1.2424397CrossrefGoogle Scholar

  • [18] B.H. Hamadani and D. Natelson, “Gated nonlinear transport in organic polymer field effect transistors”, J. Appl. Phys. 95, 1227 (2004) http://dx.doi.org/10.1063/1.1635979CrossrefGoogle Scholar

  • [19] L. Wang, L.D. Fine, D. Basu, and A. Dodabalapur, “Electric-field-dependent charge transport in organic thin-film transistors”, J. Appl. Phys. 101, 054515 (2007). http://dx.doi.org/10.1063/1.2496316CrossrefGoogle Scholar

  • [20] B.H. Hamadani, C.A. Richter, D.J. Gundlach, R.J. Kline, I. McCulloch, and M. Heeney, “Influence of source-drain electric field on mobility and charge transport in organic field-effect transistors”, J. Appl. Phys. 102, 044503 (2007). http://dx.doi.org/10.1063/1.2769782CrossrefGoogle Scholar

  • [21] Y. Inoue, Sh. Tokito, K. Ito, and T. Suzuki, “Organic thin-film transistors based on anthracene oligomers”, J. Appl. Phys. 95, 5795–5799 (2004). http://dx.doi.org/10.1063/1.1707206CrossrefGoogle Scholar

  • [22] A. Dodabalapur, H.E. Katz, L. Torsi, and R.C. Haddon, “Organic heterostructure field-effect transistors”, Science 269, 1560–1562 (1995). http://dx.doi.org/10.1126/science.269.5230.1560CrossrefGoogle Scholar

  • [23] L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, and R.H. Friend, “General observation of n-type field-effect behavior in organic semiconductors”, Nature (London) 434, 194 (2005). http://dx.doi.org/10.1038/nature03376CrossrefGoogle Scholar

  • [24] T.B. Singh, P. Senkarabacak, N.S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer, and G. Horowitz, “Organic inverter circuits employing ambipolar pentacene field-effect transistors”, Appl. Phys. Lett. 89, 033512–4 (2006). http://dx.doi.org/10.1063/1.2235947CrossrefGoogle Scholar

  • [25] N. Benson, A. Gassmann, E. Mankel, T. Mayer, C. Melzer, R. Schmechel, and H. von Seggern, “The role of Ca traces in the passivation of silicon dioxide dielectrics for electron transport in pentacene organic field effect transistors”, J. Appl. Phys. 104, 054505–10 (2008). http://dx.doi.org/10.1063/1.2973455CrossrefGoogle Scholar

  • [26] T.F. Guo, Z.J. Tsai, S.Y. Chen, T.C. Wen, and C.T. Chung, “Influence of polymer gate -dielectrics on n-channel conduction of pentacene-based organic field-effect transistors”, J. Appl. Phys. 101, 124505–11 (2007). http://dx.doi.org/10.1063/1.2748869CrossrefGoogle Scholar

  • [27] P. Miskiewicz, S. Kotarba, J. Jung, T. Marszalek, M. Mas-Torrent, E. Gomar-Nadal, D. B. Amabilino, C. Rovira, J. Veciana, W. Maniukiewicz, and J. Ulanski, “Influence of SiO2 surface energy on the performance of organic field effect transistors based on highly oriented, zone-cast layers of a tetrathiafulvalene derivative”, J. Appl. Phys. 104, 054509–16 (2008). http://dx.doi.org/10.1063/1.2968441CrossrefGoogle Scholar

  • [28] L.A. Majewski, R. Schroeder, M. Grell, P.A. Glarvey, and M.L. Turner, “High capacitance organic field-effect transistors with modified gate insulator surface”, J. Appl. Phys. 96, 5781–5787 (2004). http://dx.doi.org/10.1063/1.1798401CrossrefGoogle Scholar

  • [29] K. Ueno, Sh. Abe, R. Onoki, and K. Saiki, “Anodization of electrolytically polished Ta surfaces for enhancement of carrier injection into organic field-effect transistors”, J. Appl. Phys. 98, 114503–114511 (2005). http://dx.doi.org/10.1063/1.2138807CrossrefGoogle Scholar

  • [30] R. Parashkov, E. Becker, G. Ginev, T. Riedl, H.H. Johannes, and W. Kowalsky, “All-organic thin-film transistors made of poly(3-butylthiophene) semiconducting and various polymeric insulating layers”, J. Appl. Phys. 95, 1594–1596 (2004). http://dx.doi.org/10.1063/1.1636524CrossrefGoogle Scholar

  • [31] L.A. Majewski, R. Schroeder, and M. Grell, “Organic field-effect transistors with ultrathin gate insulator”, Synth. Met. 144, 97–100 (2004). http://dx.doi.org/10.1016/j.synthmet.2004.02.012CrossrefGoogle Scholar

  • [32] Y. Chen, I. Shih, and S. Xiao, “Effects of FeCl3 doping on polymer-based thin film transistors”, J. Appl. Phys. 96, 454–458 (2004). http://dx.doi.org/10.1063/1.1760838Google Scholar

  • [33] Semiconducting Polymers-Chemistry: Physics, Engineering, edited by G. Hodziioannou and P.F. van Hotten, Wiley-VCH Verlag GmbH, 2000. Google Scholar

  • [34] D.J. Gundlach, K.P. Pernstich, G. Wilckens, M. Grüter, S. Haas, and B. Batlogg, “High mobility n-channel organic thin-film transistors and complementary inverters”, J. Appl. Phys. 98, 064502 (2005). http://dx.doi.org/10.1063/1.2043256CrossrefGoogle Scholar

  • [35] C. Goldmann, C. Krellner, K.P. Pernstich, S. Haas, D.J. Gundlach, and B. Batlogg, “Determination of the interface trap density of rubrene single-crystal field-effect transistors and comparison to the bulk trap density”, J. Appl. Phys. 99, 034507 (2006). http://dx.doi.org/10.1063/1.2170421CrossrefGoogle Scholar

  • [36] R.V.R. Balakrishnan, A.K. Kapoor, V. Kumar, S.C. Jain, and R. Mertens, “Effect of field dependent trap occupancy on organic thin film transistor characteristics”, J. Appl. Phys. 94, 6302–6306 (2003). Google Scholar

  • [37] T. Holstein, “Studies of polaron motion: part II. The small polaron” Ann. Phys. 8, 343–389 (1959). http://dx.doi.org/10.1016/0003-4916(59)90003-XCrossrefGoogle Scholar

  • [38] J. Frenkel, “On breakdown phenomena of insulators and electronic semiconductors” Phys. Rev. 54, 647–648 (1938). http://dx.doi.org/10.1103/PhysRev.54.647CrossrefGoogle Scholar

  • [39] S. Scheinert and G. Paasch, “Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors”, J. Appl. Phys. 105, 014509 (2009). http://dx.doi.org/10.1063/1.3058640CrossrefGoogle Scholar

  • [40] T. Minari, T. Nemoto, and S. Isoda, “Temperature and electric-field dependence of the mobility, of a single-grain penta-cene field-effect transistor”, J. Appl. Phys. 99, 034506 (2006). http://dx.doi.org/10.1063/1.2169872CrossrefGoogle Scholar

  • [41] K.P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D.J. Gundlach, B. Batlogg, A.N. Rashid, and G. Schitter, “Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator”, J. Appl. Phys. 96, 6431–6438 (2004). http://dx.doi.org/10.1063/1.1810205CrossrefGoogle Scholar

  • [42] S. Fukuda, H. Kajii, H. Okuya, T. Ogata, M. Takahashi, and Y. Ohmori, “Investigation of interfaces between insulator and active layer, and between active layer and electrodes in n-type organic field-effect transistors”, Jpn. J. Appl. Phys. 47, 1307–1310 (2008). http://dx.doi.org/10.1143/JJAP.47.1307CrossrefGoogle Scholar

  • [43] J.B. Koo, K.S. Suh, I.K. You, and S.H. Kim, “Device characteristics of pentacene dual-gate organic thin-film transistor”, Jpn. J. Appl. Phys. 46, 5062–5066 (2007). http://dx.doi.org/10.1143/JJAP.46.5062CrossrefGoogle Scholar

  • [44] J. Zaumseil, K.W. Baldwin, and J.A. Rogers, “Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination”, J. Appl. Phys. 93, 6117 (2003). CrossrefGoogle Scholar

  • [45] L.A. Majewski, R. Schroeder and M. Grell, “Organic field-effect transistors with electroplated platinum contacts”, Appl. Phys. Lett. 85, 3620–3622 (2004). http://dx.doi.org/10.1063/1.1797540CrossrefGoogle Scholar

  • [46] R.J. Chesterfield, J.C. McKeen, C.R. Newman, C.D. Frisbie, P.C. Ewbank, K.R. Mann, and L.L. Miller, “Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors”, J. Appl. Phys. 95, 6396–6405 (2004). http://dx.doi.org/10.1063/1.1710729CrossrefGoogle Scholar

  • [47] S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, and K. Yase, “Influence of moisture on device characteristics of polythiophene-based field-effect transistors”, J. Appl. Phys. 95, 5088–5093 (2004). http://dx.doi.org/10.1063/1.1691190CrossrefGoogle Scholar

  • [48] T. Ahimine, T. Yasuda, M. Saito, H. Nakamura, and T. Tsutsui, “Air stability of p-channel organic field-effect transistors based on oligo-p-phenylenevinylene derivatives”, Jpn. J. Appl. Phys. 47, 1760–1762 (2008). http://dx.doi.org/10.1143/JJAP.47.1760CrossrefGoogle Scholar

  • [49] J. Park, J. Park, N. Kim, H.J. Lee, and M. Yi, “Performance enhancement of organic thin-film transistors with C60/Au bilayer electrode”, Jpn. J. Appl. Phys. 47, 5668–5671 (2008). http://dx.doi.org/10.1143/JJAP.47.5668CrossrefGoogle Scholar

  • [50] D.W. Park, C.A. Lee, K.D. Jung, B.J. Kim, B.G. Park, H. Shin, and J.D. Lee “Electrically stable organic thin-film transistors and circuits using organic/inorganicdouble-layer insulator”, Jpn. J. Appl. Phys. 46, 2640–2644 (2007). http://dx.doi.org/10.1143/JJAP.46.2640CrossrefGoogle Scholar

  • [51] H.W. Zan and K.H. Yen, “Vertical-channel organic thin-film transistors with meshed electrode and low leakage current”, Jpn. J. Appl. Phys. 46, 3315–3318 (2007). http://dx.doi.org/10.1143/JJAP.46.3315CrossrefGoogle Scholar

  • [52] T. Sekitani and T. Someya, “Air-stable operation of organic field-effect transistors on plastic films using organic/metallic hybrid passivation layers”, Jpn. J. Appl. Phys. 46, 4300–4306 (2007). http://dx.doi.org/10.1143/JJAP.46.4300CrossrefGoogle Scholar

  • [53] J. Ficker, A. Ullmann, W. Fix, H. Rost, and W. Clemens, “Stability of polythiophene-based transistors and circuits”, J. Appl. Phys. 94, 2638–2641 (2003). http://dx.doi.org/10.1063/1.1592869CrossrefGoogle Scholar

  • [54] R. Schroeder, L.A. Majewski, and M. Grell, “Improving organic transistor performance with Schottky contacts”, Appl. Phys. Lett. 84, 1004–1006 (2004). http://dx.doi.org/10.1063/1.1645993CrossrefGoogle Scholar

  • [55] A. Takshi, A. Dimopoulos, and J.D. Madden, “Depletion width measurement in an organic Schottky contact using a metal-semiconductor field-effect transistor”, Appl. Phys. Lett. 91, 083513 (2007). http://dx.doi.org/10.1063/1.2773953CrossrefGoogle Scholar

  • [56] A. Knobloch, A. Manuelli, A. Bernds, and W. Clemens, “Fully printed integrated circuits from solution processable polymers”, J. Appl. Phys. 96, 2286–2291 (2004). http://dx.doi.org/10.1063/1.1767291CrossrefGoogle Scholar

  • [57] D. Kim, S. Jeong, J. Moon, S. Han, and J. Chung, “Organic thin film transistors with ink-jet printed metal nanoparticle electrodes of a reduced channel length by laser ablation”, Appl. Phys. Lett. 91, 071114 (2007). http://dx.doi.org/10.1063/1.2771059CrossrefGoogle Scholar

  • [58] D.R. Hines, V.W. Ballarotto, E.D. Williams, Y. Shao, and S.A. Solin, “Transfer printing methods for the fabrication of flexible organic electronics”, J. Appl. Phys. 101, 024503 (2007). http://dx.doi.org/10.1063/1.2403836CrossrefGoogle Scholar

  • [59] T.D. Anthopoulos, D.M. de Leeuw, E. Cantatore, P. van’t Hof, J. Alma, and J.C. Hummelen, “Solution processible organic transistors and circuits based on a C70 methanofullerene”, J. Appl. Phys. 98, 054503 (2005). http://dx.doi.org/10.1063/1.2034083CrossrefGoogle Scholar

  • [60] N.J. Pinto, R. Pérez, C.H. Mueller, N. Theofylaktos, and F.A. Miranda, “Dual input AND gate fabricated from a single channel poly 3-hexylthiophene thin film field effect transistor”, J. Appl. Phys. 99, 084504 (2006). http://dx.doi.org/10.1063/1.2188131CrossrefGoogle Scholar

  • [61] G. Gu, M.G. Kane, and S.C. Mau, “Reversible memory effects and acceptor states in pentacene-based organic thin—film transistors”, J. Appl. Phys. 101, 014504 (2007). http://dx.doi.org/10.1063/1.2403241CrossrefGoogle Scholar

  • [62] S.H. Hur, C. Kocabas, A. Gaur, O. Ok Park, M. Shima, and J.A. Rogers, “Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks”, J. Appl. Phys. 98, 114302 (2005). http://dx.doi.org/10.1063/1.2135415CrossrefGoogle Scholar

  • [63] R.D. Yang, J. Park, C.N. Colesniuc, I.K. Schuller, W.C. Trogler, and A.C. Kummel, “Ultralow drift in organic thin- -film transistor chemical sensors by pulsed gating”, J. Appl. Phys. 102, 034515 (2007). http://dx.doi.org/10.1063/1.2767633CrossrefGoogle Scholar

  • [64] G. Guillaud, J. Simon, and J.P. Germain, “Metallophthalo-cyanines gas sensors, resistors and field effect transistors”, Coordin. Chem. Rev. 178/180, 1433–1484 (1998). http://dx.doi.org/10.1016/S0010-8545(98)00177-5CrossrefGoogle Scholar

About the article

Published Online: 2010-04-13

Published in Print: 2010-06-01

Citation Information: Opto-Electronics Review, Volume 18, Issue 2, Pages 121–136, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-010-0008-9.

Export Citation

© 2010 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in