Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 18, Issue 3 (Sep 2010)

Issues

Uncooled MWIR and LWIR photodetectors in Poland

J. Piotrowski / J. Pawluczyk / A. Piotrowski / W. Gawron / M. Romanis / K. Kłos
Published Online: 2010-09-05 | DOI: https://doi.org/10.2478/s11772-010-1022-y

Abstract

The history, status, and recent progress in the middle and long wavelength Hg1−xCdxTe infrared detectors operating at near room temperatures are reviewed. Thermal generation of charge carriers in narrow gap semiconductor is a major limitation or sensitivity. Cooling is a straightforward way to suppress thermal generation of charge carriers and reduce related noise. However, at the same time, cooling requirements make infrared systems bulky, heavy, and inconvenient in use. A number of concepts to improve performance of photodetectors operating at near room temperatures have been proposed and implemented. Recent considerations of the fundamental detector mechanisms suggest that near perfect detection can be achieved without the need for cryogenic cooling. This paper, to a large degree, is based on the research, development, and commercialization of uncooled HgCdTe detectors in Poland. The devices have been based on 3D-variable band gap and doping level structures that integrate optical, detection and electric functions in a monolithic chip. The device architecture is optimized for the best compromise between requirements of high quantum efficiency, efficient and fast collection of photogenerated charge carriers, minimized thermal generation, reduced parasitic impedances, wide linear range, wide acceptance angles and other device features. Recent refinements in the devices design and technology have lead to sensitivities close to the background radiation noise limit, extension of useful spectral range to > 16 μm wavelength and picosecond range response times. The devices have found numerous applications in various optoelectronic systems. Among them there are fast scan FTIR spectrometers developed under MEMFIS project.

Keywords: infrared photodetectors; uncooled detection; HgCdTe; graded gap structures

  • [1] W.D. Lawson, S. Nielsen, E.H. Putley, and A.S. Young, “Preparation and properties of HgTe-CdTe”, J. Phys. Chem. Solids 9, 325–329 (1959). http://dx.doi.org/10.1016/0022-3697(59)90110-6CrossrefGoogle Scholar

  • [2] R.R. Galazka and W. Giriat, “Electrical properties of the CdTe-HgTe system”, Bull. Acad. Polon. Sci. 9, 281 (1961). Google Scholar

  • [3] R. Gałązka, “Preparation, doping and electrical properties of Hg0.9Cd0.1Te”, Acta Phys. Polon. 24, 791–800 (1963). Google Scholar

  • [4] W. Giriat, Z. Dziuba, R.R. Galazka, L. Sosnowski, and T. Zakrzewski, “Electrical properties of the semiconducting system CdxHg1−x Te”, Proc. 7 thICPS, Dunod Editeur, Paris, 251 (1964). Google Scholar

  • [5] W. Giriat and M. Grynberg, “Photoelectromagnetic infrared detector”, Przegląd Elektroniki 4, 216–221 (1963). (in Polish) Google Scholar

  • [6] J. Piotrowski and A. Rogalski, Semiconductor Infrared Detectors, WNT Warsaw, 1984. (in Polish) Google Scholar

  • [7] G. Cohen-Solal and Y. Marfaing, “Transport of photocarriers in CdxHg1−xTe graded.gap structures”, Solid. State Electron. 11, 1131–1147 (1968). http://dx.doi.org/10.1016/0038-1101(68)90005-1CrossrefGoogle Scholar

  • [8] J. Piotrowski, “A new method of obtaining CdxHg1−xTe thin films”, Electr. Technol. 5, 87–89 (1972). Google Scholar

  • [9] J. Piotrowski, “Electrical and photoelectric properties of Hg1−xCdxTe films”, Msc Dissertation, MUT, Warsaw, 1973. (in Polish) Google Scholar

  • [10] E. Igras, R. Jeżykowski, T. Persak, J. Piotrowski, and Z. Nowak, “Epitaxial CdxHg1−xTe layers as infrared detectors”, Proc. 6 thInt. Symp. on Photon Detectors, Siofok, Hungary, 221–236 (1974). Google Scholar

  • [11] J. Piotrowski, W. Galus, and M. Grudzie., “Near room-temperature IR photo.detectors”, Infrared Phys. 31, 1–48 (1991). http://dx.doi.org/10.1016/0020-0891(91)90037-GCrossrefGoogle Scholar

  • [12] Z. Nowak, J. Piotrowski, and J. Rutkowski, “Growth of HgZnTe by cast-recrystallization”, J. Cryst. Growth 89, 237–241 (1988). http://dx.doi.org/10.1016/0022-0248(88)90407-1CrossrefGoogle Scholar

  • [13] K. Adamiec, A. Maciak, Z. Nowak, and J. Piotrowski, “ZnHgTe as a material for ambient temperature 10.6 micrometer photodetectors”, Appl. Phys. Lett. 54, 143–144 (1989). http://dx.doi.org/10.1063/1.101210CrossrefGoogle Scholar

  • [14] J. Piotrowski, K. Adamiec, and A. Maciak, “High-temperature 10.6.μm HgZnTe photodetectors”, Infrared Phys. 29, 267–270 (1989). http://dx.doi.org/10.1016/0020-0891(89)90061-4Google Scholar

  • [15] P. Brogowski, H. Mucha, and J Piotrowski, “Modification of mercury cadmium telluride, mercury manganese tellurium, and mercury zinc telluride by ion etching”, Phys. Stat. Sol., 114(a), K37 (1989). http://dx.doi.org/10.1002/pssa.2211140154CrossrefGoogle Scholar

  • [16] P. Brogowski and J. Piotrowski, “The p-to-n conversion of HgCdTe, HgZnTe and HgMnTe by anodic oxidation and subsequent heat treatment”, Semicond. Sci. 5, 530–532 (1990). http://dx.doi.org/10.1088/0268-1242/5/6/011CrossrefGoogle Scholar

  • [17] E. Igras and J. Piotrowski, “A new (Cd,Hg)Te photodiode type with protected junction surface”, Opt. Appl. 6, 99–106 (1976). Google Scholar

  • [18] A. Rogalski, J. Piotrowski, and J. Gronkowski, “A modified hot wall epitaxy technique for the growth of CdTe and Hg1−xCdxTe epitaxial layers”, Thin Solid Films 191, 239–245 (1990). http://dx.doi.org/10.1016/0040-6090(90)90376-OCrossrefGoogle Scholar

  • [19] L. Kubiak, P. Madejczyk, J. Wenus, W. Gawron, K. Jóźwikowski, J. Rutkowski, and A. Rogalski, “Status of HgCdTe photodiodes at the Military University of Technology”, Opto-Electron. Rev. 11, 211–226 (2003). Google Scholar

  • [20] A. Rogalski and J. Piotrowski, “Intrinsic infrared photodetectors”, Prog. Quant. Electron. 12, 87–289 (1988). Pergamon Press. http://dx.doi.org/10.1016/0079-6727(88)90001-8CrossrefGoogle Scholar

  • [21] J. Piotrowski, A. Jóźwikowska, K. Jóźwikowski, and R. Ciupa, “Numerical analysis of longwavelength extracted photodiodes”, Infrared Phys. 34, 565–572 (1993). http://dx.doi.org/10.1016/0020-0891(93)90112-KCrossrefGoogle Scholar

  • [22] Infrared Photon Detectors, edited by A. Rogalski, SPIE Optical Engineering Press, Bellingham, Washington USA, 1995. Google Scholar

  • [23] A. Rogalski, Infrared Detectors, Gordon and Breach Science Publishers, Amsterdam, 2000. Google Scholar

  • [24] A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-gap Semiconductor Photodiodes, SPIE Press, Bellingham, 2000. Google Scholar

  • [25] A. Rogalski, “Hg-based alternatives to MCT”, chapter in Infrared Detectors and Emitters: Materials and Devices, pp. 377–400, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2001. Google Scholar

  • [26] A. Rogalski, “Infrared detectors: status and trends”, Prog. Quant. Electron. 27, 59–210 (2003). http://dx.doi.org/10.1016/S0079-6727(02)00024-1CrossrefGoogle Scholar

  • [27] A. Rogalski, “Photon detectors”, chapter in Encyclopedia of Optical Engineering, pp. 1985–2035, edited by R. Driggers, Marcel Dekker, Inc., New York, 2003. Google Scholar

  • [28] A. Rogalski, Infrared Detectors: Developments, SPIE Milestone Series, SPIE Optical Engineering Press, Bellingham, Washington USA, 2004. Google Scholar

  • [29] A. Rogalski, “HgCdTe infrared detector material: history, status and outlook”, Rep. Prog. Phys. 68, 2267–2336 (2005). http://dx.doi.org/10.1088/0034-4885/68/10/R01CrossrefGoogle Scholar

  • [30] P. Becla, E. Dudziak, and J.M. Pawlikowski, “Spectral sensivity of the photovoltaic effect in CdxHg1−xTe p-n junctions”, Opt. Appl. 4, 3–5 (1974). Google Scholar

  • [31] J.M. Pawlikowski and P. Becla, “Some properties of photovoltaic Hg1−xCdxTe detectors for infrared radiation”, Infrared Phys. 15, 331–337 (1975). http://dx.doi.org/10.1016/0020-0891(75)90051-2CrossrefGoogle Scholar

  • [32] P. Becla and J.M. Pawlikowski, “Epitaxial Hg1−xCdxTe photovoltaic detectors”, Infrared Phys. 16, 457–464 (1975). http://dx.doi.org/10.1016/0020-0891(76)90087-7CrossrefGoogle Scholar

  • [33] J.M. Pawlikowski, “Photoconductivity of graded-gap Hg1−xCdxTe”, Infrared Phys. 19, 179–184 (1978). http://dx.doi.org/10.1016/0020-0891(79)90024-1CrossrefGoogle Scholar

  • [34] J.M. Pawlikowski, “Application of epitaxial graded-gap semiconductor layers broad range photodetectors”, Thin Solid Film 50, 269–272 (1978). http://dx.doi.org/10.1016/0040-6090(78)90112-8CrossrefGoogle Scholar

  • [35] P. Becla and E. Placzek-Popko, “Electrical properties of infrared photovoltaic Hg1−xCdxTe detectors”, Infrared Phys. 21, 323–332 (1981). http://dx.doi.org/10.1016/0020-0891(81)90038-5CrossrefGoogle Scholar

  • [36] M. Nowak, “The photomagnetoelectric effect and photoconductivity for non-normal incidence of radiation”, Phys. Stat. Sol. (a) 80, 691–701 (1983). http://dx.doi.org/10.1002/pssa.2210800235CrossrefGoogle Scholar

  • [37] M. Grudzień and J. Piotrowski, “Monolithic optically immersed HgCdTe IR detectors”, Infrared Phys. 29, 251–253 (1989). http://dx.doi.org/10.1016/0020-0891(89)90058-4CrossrefGoogle Scholar

  • [38] J. Piotrowski, W. Galus, and M. Grudzień, “Near room-temperature IR photo.detectors”, Infrared Phys. 31, 1–48 (1991). http://dx.doi.org/10.1016/0020-0891(91)90037-GCrossrefGoogle Scholar

  • [39] J. Piotrowski, W. Gawron, and Z. Djuric, “New generation of near-room-temperature photodetectors”, Opt. Eng. 33, 1413–1421 (1994). http://dx.doi.org/10.1117/12.165795CrossrefGoogle Scholar

  • [40] J. Piotrowski, “Hg1−xCdxTe infrared photodetectors”, in Infrared Photon Detectors, pp. 391–494, edited by A. Rogalski, SPIE, Bellingham, 1995. Google Scholar

  • [41] J. Piotrowski and W. Gawron, “Ultimate performance of infrared photodetectors and figure of merit of detector material”, Infrared Phys. Techn. 38, 63–68 (1997). http://dx.doi.org/10.1016/S1350-4495(96)00030-8CrossrefGoogle Scholar

  • [42] J. Piotrowski and M. Razeghi, “Improved performance of IR photodetectors with 3D gap engineering”, Proc. SPIE 2397, 180–192 (1995). http://dx.doi.org/10.1117/12.206868CrossrefGoogle Scholar

  • [43] J. Piotrowski, M. Grudzie., Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg1−xCdxTeLWIR detectors”, Proc. SPIE 4130, 175–184 (2000). http://dx.doi.org/10.1117/12.409841CrossrefGoogle Scholar

  • [44] J. Piotrowski, “Uncooled operation of IR photodetectors”, Opto-Electron. Rev. 12, 11–122 (2004). Google Scholar

  • [45] J. Piotrowski and A. Rogalski, High-Operating-Temperature Infrared Photodetectors, SPIE, Bellingham (2007). http://dx.doi.org/10.1117/3.717228CrossrefGoogle Scholar

  • [46] A. Piotrowski and J. Piotrowski, Room Temperature Photodetectors, Willey (to be published in 2009). Google Scholar

  • [47] J. Piotrowski, Z. Djurić, W. Galus, V. Jović, M. Grudzień, Z. Djinović, and Z. Nowak, “Composition and thickness control of CdxHg1−xTe layers grown by open tube isothermal vapour phase epitaxy”, J. Cryst. Growth 83, 122–126 (1987). http://dx.doi.org/10.1016/0022-0248(87)90512-4CrossrefGoogle Scholar

  • [48] J. Piotrowski, Z. Nowak, M. Grudzień, W. Galus, K. Adamiec, Z. Djurić, V. Jović, and Z. Djinović, “High capability, quasi closed growth system for isothermal vapour phase epitaxy of (Hg,Cd)Te”, Thin Solid Film 161, 157–169 (1988). http://dx.doi.org/10.1016/0040-6090(88)90247-7CrossrefGoogle Scholar

  • [49] Z. Djuric and J. Piotrowski, “Generalized model of the isothermal vapour phase epitaxy of HgCdTe”, Appl. Phys. Lett. 51, 1699–1701 (1987). http://dx.doi.org/10.1063/1.98548CrossrefGoogle Scholar

  • [50] K. Adamiec, M. Grudzie., Z. Nowak, J. Pawluczyk, J. Piotrowski, J. Antoszewski, J. Dell, C. Musca, and L. Faraone, “Isothermal vapour phase epitaxy as a versatile technology for infrared photodetectors”, Proc. SPIE 2999, 34–43 (1997). http://dx.doi.org/10.1117/12.271208CrossrefGoogle Scholar

  • [51] A. Piotrowski, P. Madejczyk, W. Gawron, K. Klos, M. Romanis, M. Grudzień, A. Rogalski, and J. Piotrowski, “MOCVD growth of Hg1−xCdxTe heterostructures for uncooled infrared photodetectors”, Opto-Electron. Rev. 12, 453–458 (2004). Google Scholar

  • [52] A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, M. Grudzień, J. Piotrowski, and A. Rogalski, “Recent progress in MOCVD growth of Hg1−xCdxTe heterostructures for uncooled infrared photodetectors”, Proc. SPIE 5957, 273–284 (2005). http://dx.doi.org/10.1117/12.593337CrossrefGoogle Scholar

  • [53] A. Piotrowski, W. Gawron, K. Klos, J. Pawluczyk, J. Piotrowski, P. Madejczyk, and A. Rogalski, “Improvements in MOCVD growth of Hg1−xCdxTe heterostructures for uncooled infrared photodetectors”, Proc. SPIE 5957, 108–116 (2005). Google Scholar

  • [54] A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos J. Pawluczyk, J. Rutkowski, J. Piotrowski, and A. Rogalski, “Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors”, Infrared Phys. Techn. 49, 173–182 (2007). http://dx.doi.org/10.1016/j.infrared.2006.06.026CrossrefGoogle Scholar

  • [55] Vigo System S.A. (2008, unpublished) Google Scholar

  • [56] VIGO System S.A. Website http://www.vigo.com.pl Google Scholar

  • [57] A. Piotrowski, K. Kłos, W. Gawron, J. Pawluczyk, Z. Orman, and J. Piotrowski, “Uncooled or minimally cooled 10 μm photodetectors with subnanosecond response time”, Proc. SPIE 6542, 65421B (2007). http://dx.doi.org/10.1117/12.730230CrossrefGoogle Scholar

  • [58] A. Bocci, A. Drago A. Marcelli, and J. Piotrowski, “Beam diagnostics at IR wavelengths at NSRL”, 09 Particle Accelerator Conference, Vancouver. (to be published). Google Scholar

  • [59] MEMFIS project website, http://www.memfis.project.eu/ Google Scholar

  • [60] T. Elliott, N.T. Gordon, and A.M. White, “Towards background-limited, room-temperature, infrared photon detectors in the 3–13 μm wavelength range”, Appl. Phys. Lett. 74, 2881–2883 (1999). http://dx.doi.org/10.1063/1.124045Google Scholar

  • [61] M.A. Kinch, Infrared Detector Materials, SPIE Press, Bellingham, 2007. http://dx.doi.org/10.1117/3.741688CrossrefGoogle Scholar

  • [62] APSYS Device Simulator, Software Package, Crosslight Software Inc, Canada. Google Scholar

  • [63] C.T. Elliott, “Photoconductive and non-equilibrium devices in HgCdTe and related alloys”, in Infrared Detectors and Emitters: Materials and Devices, pp. 279–312, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2000. Google Scholar

  • [64] M.K. Ashby, N.T. Gordon, C.T. Elliott, C.L. Jones, C.D. Maxey, L. Hipwood, and R. Catchpole, “Investigation into the source of 1/f noise in Hg1−xCdxTe diodes”, J. Electron. Mater. 33, 757–765 (2004). http://dx.doi.org/10.1007/s11664-004-0078-xGoogle Scholar

About the article

Published Online: 2010-09-05

Published in Print: 2010-09-01


Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-010-1022-y.

Export Citation

© 2010 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in