Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 18, Issue 3


Mid infrared resonant cavity detectors and lasers with epitaxial lead-chalcogenides

H. Zogg / M. Rahim / A. Khiar / M. Fill / F. Felder / N. Quack
Published Online: 2010-09-05 | DOI: https://doi.org/10.2478/s11772-010-1028-5


Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and gas spectroscopy. One way to realize such tunable devices is by using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range.

Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolour IR-FPA or “IR-AFPA”, adaptive focal plane arrays.

We report the first room temperature mid-IR VECSEL (vertical external cavity surface emitting laser) with a wavelength above 3 μm. The active region is just 850 nm PbSe, followed by a 2.5 pair Bragg mirror. Output power is > 10 mW at RT.

Keywords: resonant cavity detectors; lead salts; MEMS devices; VECSELs

  • [1] “Lead chalcogenides: Physics and applications”, in Optoelectronic Properties of Semiconductors and Superlattices, Vol. 18, edited by D. Khokhlov, Taylor & Francis Books, Inc., New York and London, 2003. Google Scholar

  • [2] M. Tacke, “Lead-salt lasers”, Philos. Tr. R. S. A359, 547 (2001). Google Scholar

  • [3] H. Zogg, M. Arnold, F. Felder, M. Rahim, M. Fill, and D. Boye, “Epitaxial lead-chalcogenides on Si for mid-IR detectors and emitters including cavities”, Proc. SPIE 7082, 70820H (2008). http://dx.doi.org/10.1117/12.797849Google Scholar

  • [4] P. Müller, H. Zogg, A. Fach, J. John, C. Paglino, A.N. Tiwari, M. Krejci, and G. Kostorz, “Reduction of threading dislocation densities in heavily lattice mismatched PbSe on Si(111) by glide”, Phys. Rev. Lett. 78, 3007 (1997). http://dx.doi.org/10.1103/PhysRevLett.78.3007CrossrefGoogle Scholar

  • [5] H. Zogg, K. Alchalabi, D. Zimin, and K. Kellermann, “Two-dimensional monolithic lead chalcogenide infrared sensor arrays on silicon read-out chips and noise mechanisms”, IEEE T. Electron Dev. 50, 209 (2003). http://dx.doi.org/10.1109/TED.2002.807257CrossrefGoogle Scholar

  • [6] F. Felder, M. Arnold, M. Rahim, C. Ebneter, and H. Zogg, “Tunable lead-chalcogenide on Si resonant cavity enhanced mid-infrared detector”, Appl. Phys. Lett. 91, 101102 (2007). http://dx.doi.org/10.1063/1.2779244CrossrefGoogle Scholar

  • [7] N. Quack, S. Blunier, J. Dual, F. Felder, M. Arnold, and H. Zogg, “Mid-Infrared tunable resonant cavity enhanced detectors”, Sensors 8, 5466–5478 (2008). http://dx.doi.org/10.3390/s8095466Web of ScienceCrossrefGoogle Scholar

  • [8] F. Felder, PhD dissertation, No 18786 ETH Zurich, 2010. Google Scholar

  • [9] M. Rahim, M. Arnold, F. Felder, K. Behfar, and H. Zogg, “Mid-infrared lead-chalcogenide vertical external cavity surface emitting laser with 5 μm wavelength”, Appl. Phys. Lett. 91, 151102 (2007). http://dx.doi.org/10.1063/1.2798254CrossrefGoogle Scholar

  • [10] N. Schulz, J.M. Hopkins, M. Rattunde, D. Burns, and J. Wagner, “High-brightness long-wavelength semiconductor disk lasers”, Laser Photonics Rev. 2, 160 (2008). http://dx.doi.org/10.1002/lpor.200710037Web of ScienceCrossrefGoogle Scholar

  • [11] M. Rattunde, J.-M. Hopkins, N. Schulz, B. Rösener, C. Manz, K. Kohler, D. Burns, and J. Wagner, “High-power GaSb-based optically pumped semiconductor disk laser for the 2.X μm wavelength regime”, Mid-Infrared Optoelectronics: Materials and Devices MIOMD-IX, Sept 7–11, Freiburg, 2008. Google Scholar

  • [12] W.W. Bewley, J.R. Lindle, C.S. Kim, M. Kim, C.L. Canedy, I. Vurgaftman, and J.R. Meyer, “Lifetimes and Auger coefficients in type-II W interband cascade lasers”, Appl. Phys. Lett. 93, 041118 (2008). http://dx.doi.org/10.1063/1.2967730CrossrefGoogle Scholar

  • [13] M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid.infrared semiconductor laser at room temperature”, Science 295, 301 (2002). http://dx.doi.org/10.1126/science.1066408CrossrefGoogle Scholar

  • [14] H. Zogg, M. Rahim, F. Felder, M. Fill, D. Boye, and A. Khiar, “Lead chalcogenide VECSELs on Si and BaF2 for 5 μm emission”, Proc. SPIE 7193, 71931G (2009). Google Scholar

  • [15] M. Rahim, A. Khiar, F. Felder, M. Fill, and H. Zogg, “4.5 μm wavelength vertical external cavity surface emitting laser operating above room temperature”, Appl. Phys. Lett. 94, 201112 (2009). http://dx.doi.org/10.1063/1.3139778CrossrefGoogle Scholar

  • [16] M. Rahim, M. Fill, F. Felder, D. Chappuis, M. Corda, and H. Zogg “Mid-infrared PbTe vertical external cavity surface emitting laser on Si.substrate with above 1Woutput power”, Appl. Phys. Lett. 95, 241107, 2009. http://dx.doi.org/10.1063/1.3275792CrossrefGoogle Scholar

  • [17] M. Rahim et al., unpublished. Google Scholar

  • [18] F. Felder, M. Rahim, M. Fill, H. Zogg, and N. Quack, “Lead Salt Resonant Cavity Enhanced Detector with MEMS Mirror”, Physics Procedia, Proc. 14 thInt. Conf. on Narrow Gap Semiconductors, Sendai, Japan, July 13–17, 2009. Google Scholar

About the article

Published Online: 2010-09-05

Published in Print: 2010-09-01

Citation Information: Opto-Electronics Review, Volume 18, Issue 3, Pages 231–235, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-010-1028-5.

Export Citation

© 2010 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in