Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
See all formats and pricing
More options …
Volume 18, Issue 3 (Sep 2010)


Nature of gallium deep centres in lead telluride based semiconductors

T.L. Petrenko / S.V. Plyatsko
Published Online: 2010-09-05 | DOI: https://doi.org/10.2478/s11772-010-1034-7


Doped with Ga lead telluride was taken as a model object to explain the nature of group-III deep levels in IV-VI semiconductors and to elucidate the vapour phase doping mechanism. For this goal, interaction of various gallium-containing molecules with defect-free crystal as well as with native defects in PbTe was considered. Formation energies for different point defects created in PbTe as a result of interaction the Ga2Te molecules, Ga2 dimers and single Ga atoms with a host crystal were calculated using density functional theory. Particularly GaPb and Gai together with formation of accompanied self interstitials Pbi in various charge states were examined. In addition we propose the new type of defects - the impurity complex (2Ga)Pb which looks like <111>-oriented gallium dumbbell. Calculations suggest the double donor behaviour and DX-like properties of this defect together with extremely low formation energy values. Namely, (2Ga)Pb centres are preferably formed under Ga2Te doping while (Ga2)Pb+Pbi ones are formed under Ga2 or Ga doping. In all cases, formation energies are negative and resulting defect concentration is determined by reaction kinetics only. Mechanisms of the lead vacancy compensation with the vapour phase doping are considered as well.

Keywords: lead telluride; gallium impurity; doping mechanisms; first-principle calculations

  • [1] B.A. Volkov, L.I. Ryabova and D.R. Khokhlov, “Mixed valence impurities in lead-telluride-based solid solutions”, Phys-Usp. 172, 819–851 (2002). http://dx.doi.org/10.1070/PU2002v045n08ABEH001146CrossrefGoogle Scholar

  • [2] L.I. Ryabova and D.R. Khokhlov, “Problem of impurity states in narrow-gap lead telluride-based semiconductors”, JETP Lett. 80, 133–139 (2004). http://dx.doi.org/10.1134/1.1804224CrossrefGoogle Scholar

  • [3] F.F. Sizov, S.V. Plyatsko, and V.M. Lakeenkov, “Deep levels in PbTe”, Sov. Phys. Semicond. 19, 368–371 (1985). Google Scholar

  • [4] Y.I. Ravich and S.A. Nemov, “Hopping conduction via highly localized impurity states of indium in PbTe and its solid solutions”, Semiconductors 36, 1–20 (2002). http://dx.doi.org/10.1134/1.1434506CrossrefGoogle Scholar

  • [5] S. Ahmad, K. Hoang, and S.D Mahanti, “Ab initio study of deep defect states in narrow band-gap semiconductors: Group III impurities in PbTe”, Phys. Rev. Lett. 96, 056403–4 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.056403CrossrefGoogle Scholar

  • [6] S. Ahmad, S.D. Mahanti, K. Hoang, and M.G. Kanatzidis, “Ab initio studies of the electronic structure of defects in PbTe”, Phys. Rev. B74, 155205–13 (2006). CrossrefGoogle Scholar

  • [7] K. Hoang, S.D. Mahanti, and P. Jena, “Theoretical study of deep-defect states in bulk PbTe and in thin films”, Phys. Rev. B76, 115432–18 (2007). CrossrefGoogle Scholar

  • [8] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Dolland, N.M. Harrison, I.J. Bush, P. D’arco, and M. Llunell, CRYSTAL06 User’s Manual, University of Torino, Torino, 2006. Google Scholar

  • [9] S.H. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis”, Can. J. Phys. 58, 1200–1211 (1980). http://dx.doi.org/10.1139/p80-159CrossrefGoogle Scholar

  • [10] J.P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple”, Phys. Rev. Lett. 77, 3865–3868 (1996). http://dx.doi.org/10.1103/PhysRevLett.77.3865CrossrefGoogle Scholar

  • [11] B. Metz, H. Stoll, and M. Dolg, “Small-core multiconfiguration-Dirac-Hartree-Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO”, J. Chem. Phys. 113, 2563–2569 (2000). http://dx.doi.org/10.1063/1.1305880CrossrefGoogle Scholar

  • [12] K.A. Peterson, “Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13-15 elements”, J. Chem. Phys. 119, 11099–11112 (2003). http://dx.doi.org/10.1063/1.1622923CrossrefGoogle Scholar

  • [13] K.A. Peterson, D. Figgen, E. Goll, H. Stoll, and M. Dolg, “Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements”, J. Chem. Phys. 119, 11113–11123 (2003). http://dx.doi.org/10.1063/1.1622924CrossrefGoogle Scholar

  • [14] A.K. Wilson, D.E. Woon, K.A. Peterson, and T.H. Dunning, “Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton”, J. Chem. Phys. 110, 7667–7676 (1999). http://dx.doi.org/10.1063/1.478678CrossrefGoogle Scholar

  • [15] CRC Handbook of Chemistry and Physics, edited by D.R. Lide, CRC Press, Boca Raton, 89th ed., 2008. Google Scholar

  • [16] K. Hummer, A. Grüneis, and G. Kresse, “Structural and electronic properties of lead chalcogenides from first principles”, Phys. Rev. B75, 195211–9 (2007). CrossrefGoogle Scholar

  • [17] A. Gali, P. Deák, P. Ordejón, N.T. Son, E. Janzén, and W.J. Choyke, “Aggregation of carbon interstitials in silicon carbide: A theoretical study”, Phys. Rev. B68, 125201–11 (2003). CrossrefGoogle Scholar

  • [18] Y. Yan, S.B. Zhang, and S.T. Pantelides, “Control of doping by impurity chemical potentials: predictions for p-type ZnO”, Phys. Rev. Lett. 86, 5723–5726 (2001). http://dx.doi.org/10.1103/PhysRevLett.86.5723CrossrefGoogle Scholar

  • [19] B. Cheong, C.H. Park, and K.J. Chang, “First-principles study of the compensation mechanism for nitrogen acceptors in ZnSe”, Phys. Rev. B51, 10610–10614 (1995). CrossrefGoogle Scholar

  • [20] A.M. Samoylov, M.K Sharov, S.A. Buchnev, A.M. Khoviv, and E.A. Dolgopolova, “Crystal structure, carrier concentration and IR-sensitivity of PbTe thin films doped with Ga by two different methods”, J. Cryst. Growth 240, 340–346 (2002). http://dx.doi.org/10.1016/S0022-0248(02)00912-0CrossrefGoogle Scholar

  • [21] A.M. Samoylov, S.A. Buchnev, A.M. Khoviv, E.A. Dolgopolova, and V.P. Zlomanov, “Comparative study of point defects induced in PbTe thin films doped with Ga by different techniques”, Mat. Sci. Semicon. Proc. 6, 481–485 (2003). http://dx.doi.org/10.1016/j.mssp.2003.07.014CrossrefGoogle Scholar

  • [22] Y.A. Ugai, A.M. Samoilov, M.K. Sharov, O.B. Yatsenko, and B.A. Akimov, “Transport properties of Ga-Doped PbTe thin films on Si substrates”, Inorg. Mater. 38, 12–16 (2002). http://dx.doi.org/10.1023/A:1013687024227CrossrefGoogle Scholar

  • [23] S.B. Zhang and J.E. Northrup, “Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion”, Phys. Rev. Lett. 67, 2339–2342 (1991). http://dx.doi.org/10.1103/PhysRevLett.67.2339CrossrefGoogle Scholar

  • [24] S.B. Zhang, “The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: A review”, J. Phys. Condens. Mat. 14, R881–R903 (2002). http://dx.doi.org/10.1088/0953-8984/14/34/201CrossrefGoogle Scholar

  • [25] F.F. Sizov and S.V. Plyatsko, “Homogeneity range and non-stoichiometric defects in IV-VI narrow-gap semiconductors”, J. Cryst. Growth 92, 571–580 (1988). http://dx.doi.org/10.1016/0022-0248(88)90042-5CrossrefGoogle Scholar

  • [26] B.A. Akimov, V.A. Bogoyavlenskiy, L.I. Ryabova, V.N. Vasil’kov, and S.P. Zimin, “Photoconductivity kinetics in high resistivity n-PbTe(Ga) epitaxial films”, Semicond. Sci. Tech. 14, 679–684 (1999). http://dx.doi.org/10.1088/0268-1242/14/8/302CrossrefGoogle Scholar

  • [27] W.R. Wadt and P.J. Hay, “Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi”, J. Chem. Phys. 82, 284–298 (1985). http://dx.doi.org/10.1063/1.448800CrossrefGoogle Scholar

  • [28] G. Mallia, R. Orlando, C. Roetti, P. Ugliengo, and R. Dovesi, “F center in LiF: A quantum mechanical ab initio investigation of the hyperfine interaction between the unpaired electron at the vacancy and its first seven neighbours”, Phys. Rev. B63, 235102–7 (2001). CrossrefGoogle Scholar

  • [29] F. Neese and E.J. Solomon, “Interpretation and calculation of Spin-Hamiltonian parameters in transition metal complexes”, in Magnetism: Molecules to Materials, pp. 345–466, edited by J.S. Miller, and M. Drillon, Wiley-VCH Verlag, Weinheim, 2003. Google Scholar

  • [30] L.A. Errico and M. Rentería, “Ab initio determination of the nuclear quadrupole moments of 114In, 115In and 117In”, Phys. Rev. B73, 115125–6 (2006). Google Scholar

About the article

Published Online: 2010-09-05

Published in Print: 2010-09-01

Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-010-1034-7.

Export Citation

© 2010 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in