Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 18, Issue 3


High frequency response of near-room temperature LWIR HgCdTe heterostructure photodiodes

M. Kopytko / K. Jóźwikowski / A. Jóźwikowska
  • Department of Economics and Statistics, Warsaw University of Life Science, 166 Nowoursynowska Str., 02-787, Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Rogalski
Published Online: 2010-09-05 | DOI: https://doi.org/10.2478/s11772-010-1035-6


The high frequency response of near-room temperature long wavelength infrared (LWIR) HgCdTe heterostructure photodiodes is investigated using a Fourier space method. The MOCVD HgCdTe multilayer heterostructures were grown on GaAs substrates. The response time of devices as a function of bias has been measured experimentally by using 10-μm quantum cascade laser and fast oscilloscope with suitable transimpedance amplifier. Results of theoretical predictions are compared with experimental data. It is shown that the response time at weak reverse bias condition is mainly limited by the drift time of carriers moving into π-n+ junction. Using the reverse bias higher than 50 mV, the transit time across the absorber region limits the response time. The response time of small-area devices decreases in the region of week reverse bias achieving value below 1 ns.

Keywords: HgCdTe high-temperature photodiode; response time; Fourier analysis

  • [1] J. Piotrowski, W. Galus, and M. Grudzie., “Near room-temperature IR photodetectors”, Infrared Phys. 31, 1–48 (1990). http://dx.doi.org/10.1016/0020-0891(91)90037-GCrossrefGoogle Scholar

  • [2] C.T. Elliott, N.T. Gordon, and A.M. White, “Towards background.limited, room.temperature, infrared photon detectors in the 3–13 μm wavelength range”, Appl. Phys. Lett. 74, 2881–2883 (1999). http://dx.doi.org/10.1063/1.124045CrossrefGoogle Scholar

  • [3] A. Kinch, “Fundamental physics of infrared detector materials”, J. Electron. Mater. 29, 809–817 (2000). http://dx.doi.org/10.1007/s11664-000-0229-7CrossrefGoogle Scholar

  • [4] J. Piotrowski and A. Rogalski, High Operation Temperature Photodetectors, SPIE Press, Bellingham, 2007. http://dx.doi.org/10.1117/3.717228Google Scholar

  • [5] http://vigo.com.pl/ Google Scholar

  • [6] W. Van Roosbroeck, “Theory of the electrons and holes in germanium and other semiconductors,” Bell Syst. Tech. J. 29, 560–607 (1950). Google Scholar

  • [7] M. Kurata, Numerical Analysis of Semiconductor Devices, Lexington Books, DC Heath, 1982. Google Scholar

  • [8] H.K. Gummel, “A self.consistent iterative scheme for one-dimensional steady state transistor calculations”, IEEE T. Electron Dev. ED 11, 455–465 (1964). http://dx.doi.org/10.1109/T-ED.1964.15364CrossrefGoogle Scholar

  • [9] A. De Mari, “An accurate numerical steady.state one-dimensional solution of the p.n junction”, Solid State Electron. 11, 33–58 (1968). http://dx.doi.org/10.1016/0038-1101(68)90137-8CrossrefGoogle Scholar

  • [10] Software: Semicond Devices, Dawn Technologies, Inc., California. Google Scholar

  • [11] Software: Apsys, Crosslight Software, Inc., Ontario. Google Scholar

  • [12] K. Jóźwikowski, “Numerical modelling of fluctuation phenomena in semiconductor devices”, J. Appl. Phys. 90, 1318–1327 (2001). http://dx.doi.org/10.1063/1.1379562CrossrefGoogle Scholar

  • [13] K. Jóźwikowski and A. Rogalski, “Computer modelling of dual-band HgCdTe photovoltaic detectors”, J. Appl. Phys. 90, 1286–1291 (2001). http://dx.doi.org/10.1063/1.1380989CrossrefGoogle Scholar

  • [14] K. Jóźwikowski, A. Rogalski, and A. Jóźwikowska, “Numerical modelling of fluctuation phenomena in semiconductors and detailed noise study of mid.wave infrared HgCdTe-heterostructure devices”, J. Electron. Mater. 31, 677–682 (2002). http://dx.doi.org/10.1007/s11664-002-0218-0CrossrefGoogle Scholar

  • [15] K. Jóźwikowski, W. Gawron, J. Piotrowski, and A. Jóźwikowska, “Enhanced numerical modelling of non-cooled long-wavelength multi-junction (Cd, Hg)Te photodiodes: Device modelling for circuits, components and systems”, IEE P-Circ. Dev. Syst. 150, 65.71 (2003). CrossrefGoogle Scholar

  • [16] A. Jóźwikowska, K. Jóźwikowski, J. Rutkowski, Z. Orman, and A. Rogalski, “Generation.recombination effects in high temperature HgCdTe heterostructure photodiodes”, Opto-Electron. Rev. 12, 417.428 (2004). Google Scholar

  • [17] A. Jóźwikowska, K. Jóźwikowski, J. Antoszewski, C.A. Musca, T. Nguyen, R.H. Sewell, J.M. Dell, L. Faraone, and Z. Orman, “Generation-recombination effects on dark currents in CdTe.passivated midwave infrared HgCdTe photodiodes”, J. Appl. Phys. 98, 014504 (2005). http://dx.doi.org/10.1063/1.1946201CrossrefGoogle Scholar

  • [18] W.W. Anderson, “Absorption constant of Pb1−xSnxTe and Hg1−xCdxTe alloys”, Infrared Phys. 20, 363–372 (1980). http://dx.doi.org/10.1016/0020-0891(80)90053-6Google Scholar

  • [19] J. Wenus, J. Rutkowski, and A. Rogalski, “Two-dimensional analysis of double.layer heterojunction HgCdTe photodiodes”, IEEE T. Electron Dev. 48, 1326–1332 (2001). http://dx.doi.org/10.1109/16.930647CrossrefGoogle Scholar

  • [20] E. Bellotti and D. D’Orsogna, “Numerical analysis of HgCdTe simultaneous two-colour photovoltaic infrared detectors”, IEEE J. Quantum Elect. 42, 418.426 (2006). CrossrefGoogle Scholar

  • [21] W.D. Hu, X.S. Chen, F. Yin, Z.J. Quan, Z.H. Ye, X.N. Hu, Z.F. Li, and W. Lu, “Analysis of temperature dependence of dark current mechanisms for long.wavelength HgCdTe photovoltaic infrared detectors”, J. Appl. Phys. 105, 104502 (2009). http://dx.doi.org/10.1063/1.3130163CrossrefGoogle Scholar

  • [22] A. Jóźwikowska, “Numerical solution of the nonlinear Poisson equation for semiconductor devices by application of a diffusion.equation finite difference scheme”, J. Appl. Phys. 104, 063715 (2008). http://dx.doi.org/10.1063/1.2982275CrossrefGoogle Scholar

  • [23] W.D. Hu, X.S. Chen, F. Yin, Z.H. Ye, C. Lin, X.N. Hu, Z.J. Quan, Z.F. Li, and W. Lu, “Simulation and design consideration of photoresponse for HgCdTe infrared photodiodes”, Opt. Quant. Electron. 40, 1255–1260 (2008). http://dx.doi.org/10.1007/s11082-009-9302-5Web of ScienceCrossrefGoogle Scholar

  • [24] C.T. Elliott, N.T. Gordon, R.S. Hall, T.J. Phillips, A.M. White, C.L. Jones, C.D. Maxey, and N.E. Metcalfe, “Recent results on MOVPE grown heterostructure devices”, J. Electron. Mater. 25, 1139–1145 (1996). http://dx.doi.org/10.1007/BF02654999CrossrefGoogle Scholar

  • [25] T.J. Phillips and N.T. Gordon, “Negative diffusion capacitance in Auger.suppressed HgCdTe heterostructure diodes”, J. Electron. Matter. 25, 1151–1156 (1996). http://dx.doi.org/10.1007/BF02655001CrossrefGoogle Scholar

  • [26] N.A. Penin, “Negative capacitance in semiconductor structures”, Semiconductors 30, 340–343 (1996). Google Scholar

  • [27] M. Ershow, H.C. Liu, L. Li, M. Buchanan, Z.R. Wasilewski, and A.K. Jonscher “Negative capacitance effect in semiconductor devices”, IEEE T. Electron Dev. 45, 2196–2206 (1998). http://dx.doi.org/10.1109/16.725254CrossrefGoogle Scholar

About the article

Published Online: 2010-09-05

Published in Print: 2010-09-01

Citation Information: Opto-Electronics Review, Volume 18, Issue 3, Pages 277–283, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-010-1035-6.

Export Citation

© 2010 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in