Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
See all formats and pricing
More options …
Volume 18, Issue 3 (Sep 2010)


Comparison of single-layer and bilayer InAs/GaAs quantum dots with a higher InAs coverage

S. Sengupta / S.Y. Shah / N. Halder
  • Laboratory of Solid-State Physics and Magnetism, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Chakrabarti
Published Online: 2010-09-05 | DOI: https://doi.org/10.2478/s11772-010-1039-2


Epitaxially grown self-assembled InAs quantum dots (QDs) have found applications in optoelectronics. Efforts are being made to obtain efficient quantum-dot lasers operating at longer telecommunication wavelengths, specifically 1.3 μm and 1.55 μm. This requires narrow emission linewidth from the quantum dots at these wavelengths. In InAs/GaAs single layer quantum dot (SQD) structure, higher InAs monolayer coverage for the QDs gives rise to larger dots emitting at longer wavelengths but results in inhomogeneous dot-size distribution. The bilayer quantum dot (BQD) can be used as an alternative to SQDs, which can emit at longer wavelengths (1.229 μm at 8 K) with significantly narrow linewidth (∼16.7 meV). Here, we compare the properties of single layer and bilayer quantum dots grown with higher InAs monolayer coverage. In the BQD structure, only the top QD layer is covered with increased (3.2 ML) InAs monolayer coverage. The emission line width of our BQD sample is found to be insensitive towards post growth treatments.

Keywords: quantum dots; bilayer; telecommunication; high monolayer coverage

  • [1] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current”, Appl. Phys. Lett. 40, 939 (1982). http://dx.doi.org/10.1063/1.92959CrossrefGoogle Scholar

  • [2] M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three.dimensional quantum-box lasers”, IEEE J. Quantum Elect. 22, 1915–1921 (1986). http://dx.doi.org/10.1109/JQE.1986.1073149CrossrefGoogle Scholar

  • [3] QD Laser Inc., QD Laser Commercializes Quantum Dot Laser QLF-13 Series Featuring 10Gbps High-speed Operation for Optical Telecom Applications, Press release, March 23, 2009, URL: http://www.qdlaser.com/release01.html. Google Scholar

  • [4] M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat”, Nat. Photonics 3, 30–31 (2009). http://dx.doi.org/10.1038/nphoton.2008.267CrossrefGoogle Scholar

  • [5] A. Strittmatter, T.D. Germann, Th. Kettler, K. Posilovic, J. Pohl, U.W. Pohl, and D. Bimberg, “Suppression of the wavelength blue shift during overgrowth of InGaAs-based quantum dots”, J. Cryst. Growth 310, 5066–5068 (2008). http://dx.doi.org/10.1016/j.jcrysgro.2008.07.069Web of ScienceCrossrefGoogle Scholar

  • [6] E. Clarke, P. Spencer, E. Harbord, P. Howe, and R. Murray, “Growth, optical properties and device characterisation of InAs/GaAs quantum dot bilayers”, J. Phys.: Conf. Ser. 107, 012003 (2008). http://dx.doi.org/10.1088/1742-6596/107/1/012003CrossrefGoogle Scholar

  • [7] E.C. Le Ru, P. Howe, T.S. Jones, and R. Murray, “Strain-engineered InAs/GaAs quantum dots for long-wavelength emission”, Phys. Rev. B67, 165333 (2003). Google Scholar

  • [8] H. Jiang and J. Singh, “Self-assembled semiconductor structures: Electronic and optoelectronic properties”, IEEE J. Quantum Elect. 34, 1188–1196 (1998). http://dx.doi.org/10.1109/3.687862CrossrefGoogle Scholar

  • [9] W. Seifert, N. Carlsson, M. Miller, M.E. Pistol, L. Samuelson, and L.R. Wallenberg, “In-situ growth of quantum dot structures by the Stranski-Krastanow growth mode”, Prog. Cryst. Growth Ch. 33, 423–471 (1996). http://dx.doi.org/10.1016/S0960-8974(96)00090-3CrossrefGoogle Scholar

  • [10] P.B. Joyce, T.J. Krzyzewski, G.R. Bell, B.A. Joyce, and T.S. Jones, “Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy”, Phys. Rev. B62, 10891 (2000). Google Scholar

  • [11] D. Leonard, K. Pond, and P.M. Petroff, “Critical layer thickness for self-assembled InAs island on GaAs”, Phys. Rev. B50, 11687 (1994). Google Scholar

  • [12] Z. Gong, Z.D. Fang, Z.H. Miao, Z.C. Niu, and S.L. Feng, “Structural and optical properties of InAs/GaAs quantum dots emitting at 1.5 μm”, J. Cryst. Growth 274, 78–84 (2005). http://dx.doi.org/10.1016/j.jcrysgro.2004.10.005CrossrefGoogle Scholar

  • [13] S. Chakrabarti, N. Halder, S. Sengupta, J. Charthad, S. Ghosh, and C.R. Stanley, “Photoluminescence investigation of the effects of barrier thickness and monolayer coverage on properties of bilayer InAs/GaAs quantum dots”, J. Nano. electron. Optoe. 3, 277–280 (2008). http://dx.doi.org/10.1166/jno.2008.306CrossrefGoogle Scholar

  • [14] M.O. Lipinski, H. Schuler, O.G. Schmidt, K. Eberl, and N.Y. Jin-Phillipp, “Strain-induced material intermixing of InAs quantum dots in GaAs”, Appl. Phys. Lett. 77, 1789 (2000). http://dx.doi.org/10.1063/1.1311314CrossrefGoogle Scholar

  • [15] I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, “Independent manipulation of density and size of stress-driven self-assembled quantum dots”, Appl. Phys. Lett. 73, 1841 (1998). http://dx.doi.org/10.1063/1.122300CrossrefGoogle Scholar

  • [16] J.S. Wang, J.F. Chen, J.L. Huang, P.Y. Wang, and X.J. Guo, “Carrier distribution and relaxation-induced defects of InAs/GaAs quantum dots”, Appl. Phys. Lett. 77, 3027 (2000). http://dx.doi.org/10.1063/1.1323735CrossrefGoogle Scholar

  • [17] B.L. Liang, Z.M. Wang, Yu.I. Mazur, V.V. Strelchuck, and G.J. Salamo, “Growth and characterization of bilayer InAs/GaAs quantum dot structure”, Phys. Status Solidi 203, 2403–2410 (2006). http://dx.doi.org/10.1002/pssa.200622106CrossrefGoogle Scholar

  • [18] Q. Xie, A. Madhukar, P. Chen, and N.P. Kobayashi, “Vertically self.organised InAs quantum dot islands on GaAs(100)”, Phys. Rev. Lett. 75, 2542–2545 (1995). http://dx.doi.org/10.1103/PhysRevLett.75.2542CrossrefGoogle Scholar

  • [19] G.S. Solomon, J.A. Trezza, A.F. Marshall, and J.S. Harris, Jr., “Vertically aligned and electronically coupled growth induced InAs islands in GaAs”, Phys. Rev. Lett. 76, 952–955 (1996). http://dx.doi.org/10.1103/PhysRevLett.76.952CrossrefGoogle Scholar

  • [20] A. Babinski, J. Jasinski, R. Bozek, A. Szepielow, and J.M. Baranowski, “Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap”, Appl. Phys. Lett. 79, 2576 (2001). http://dx.doi.org/10.1063/1.1412279CrossrefGoogle Scholar

About the article

Published Online: 2010-09-05

Published in Print: 2010-09-01

Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-010-1039-2.

Export Citation

© 2010 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in