Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
See all formats and pricing
In This Section
Volume 18, Issue 4 (Dec 2010)


Laser induced forward transfer of conducting polymers

M. Kandyla
  • Physics Department, National Technical University of Athens, 9 Heroon Polytechniou Str., Zografou 15780, Athens, Greece
  • Email:
/ S. Chatzandroulis
  • Institute of Microelectronics, NCSR Demokritos, Agia Paraksevi 15310, Athens, Greece
  • Email:
/ I. Zergioti
  • Physics Department, National Technical University of Athens, 9 Heroon Polytechniou Str., Zografou 15780, Athens, Greece
  • Email:
Published Online: 2010-09-18 | DOI: https://doi.org/10.2478/s11772-010-0045-4


We report on laser printing of conducting polymers directly from the solid phase. Laser induced forward transfer is employed to deposit P3HT:PCBM films on glass/ITO/PEDOT:PSS substrates. P3HT:PCBM is widely used as the active material in organic solar cells. Polyaniline films, which are also printed by laser induced forward transfer, find many applications in the field of biotechnology. Laser printing parameters are optimized and results are presented. To apply solid-phase laser printing, P3HT:PCBM films are spun cast on quartz substrates, while aniline is in-situ polymerized on quartz substrates.

Keywords: laser printing; polyaniline; organic solar cells

  • [1] U. Lange, N.V. Roznyatovskaya, and V.M. Mirsky, “Conducting polymers in chemical sensors and arrays”, Anal. Chim. Acta 614, 1–26 (2008). http://dx.doi.org/10.1016/j.aca.2008.02.068CrossrefGoogle Scholar

  • [2] J.C. Vidal, E. Garcia-Ruiz, and J.R. Castillo, “Recent advances in electropolymerized conducting polymers in amperometric biosensors”, Microchim. Acta 143, 93–111 (2003). http://dx.doi.org/10.1007/s00604-003-0067-4CrossrefGoogle Scholar

  • [3] S.R. Forrest and M.E. Thompson, “Introduction: Organic electronics and optoelectronics”, Chem. Rev. 107, 923–925 (2007). http://dx.doi.org/10.1021/cr0501590CrossrefGoogle Scholar

  • [4] B.C. Thomson and J.M.J. Frechet, “Polymer-fullerene composite solar cells”, Angew. Chem. Int. Edit. 47, 58–77 (2008). http://dx.doi.org/10.1002/anie.200702506CrossrefGoogle Scholar

  • [5] F. Li, M.A. Winnik, A. Matvienko, and A. Mandelis, “Polypyrrole nanoparticles as a thermal transducer of NIR radiation in hot-melt adhesives”, J. Mater. Chem. 17, 4309–4315 (2007). http://dx.doi.org/10.1039/b708707aCrossrefGoogle Scholar

  • [6] G. Nystrom, A. Razaq, M. Stromme, L. Nyholm, and A. Mihranyan, “Ultrafast all-polymer paper-based batteries”, Nano Lett. 9, 3635–3639 (2009). http://dx.doi.org/10.1021/nl901852hCrossrefGoogle Scholar

  • [7] M. Saurin and S.P. Armes, “Study of the chemical polymerization of pyrrole onto printed circuit boards for electroplating applications”, J. Appl. Polym. Sci. 56, 41–50 (1995). http://dx.doi.org/10.1002/app.1995.070560106CrossrefGoogle Scholar

  • [8] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J.R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future”, Adv. Mater. 12, 481–494 (2000). http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-CCrossrefGoogle Scholar

  • [9] T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers”, Appl. Phys. Lett. 92, 033306 (2008). http://dx.doi.org/10.1063/1.2833185CrossrefGoogle Scholar

  • [10] S.E. Shaheen, R. Radspinner, N. Peyghambarian, and G.E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing”, Appl. Phys. Lett. 79, 2996–2998 (2001). http://dx.doi.org/10.1063/1.1413501CrossrefGoogle Scholar

  • [11] D. Vak, S.S. Kim, J. Jo, S.H. Oh, S.I. Na, J. Kim, and D.Y. Kim, “Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation”, Appl. Phys. Lett. 91, 081102 (2007). http://dx.doi.org/10.1063/1.2772766CrossrefGoogle Scholar

  • [12] R.M. Swanson, “Photovoltaics power up”, Science 324, 891–892 (2009). http://dx.doi.org/10.1126/science.1169616CrossrefGoogle Scholar

  • [13] S.A. Backer, K. Sivula, D.F. Kavulak, and J.M.J. Frechet, “High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives”, Chem. Mater. 19, 2927–2929 (2007). http://dx.doi.org/10.1021/cm070893vCrossrefGoogle Scholar

  • [14] E. Ahlswede, W. Mühleisen, M.W.M. Wahi, J. Hanisch, and M. Powalla, “Highly efficient organic solar cells with printable low-cost transparent contacts”, Appl. Phys. Lett. 92, 143307 (2008). http://dx.doi.org/10.1063/1.2907564CrossrefGoogle Scholar

  • [15] C. Deibel, A. Baumann, and V. Dyakonov, “Polaron recombination in pristine and annealed bulk heterojunction solar cells”, Appl. Phys. Lett. 93, 163303 (2008). http://dx.doi.org/10.1063/1.3005593CrossrefGoogle Scholar

  • [16] X. Chen, C. Zhao, L. Rothberg, and M.K. Ng, “Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification”, Appl. Phys. Lett. 93, 123302 (2008). http://dx.doi.org/10.1063/1.2988190CrossrefGoogle Scholar

  • [17] E. Kymakis, N. Kornilios, and E. Koudoumas, “Carbon nanotube doping of P3HT:PCBM photovoltaic devices”, J. Phys. D Appl. Phys. 41, 165110 (2008). http://dx.doi.org/10.1088/0022-3727/41/16/165110CrossrefGoogle Scholar

  • [18] V.D. Mihailetchi, H. Xie, B. Boer, L.J.A. Koster, and P.W.M. Blom, “Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells”, Adv. Funct. Mater. 16, 699–708 (2006). http://dx.doi.org/10.1002/adfm.200500420CrossrefGoogle Scholar

  • [19] F.C. Chen, Y.K. Lin, and C.J. Ko, “Submicron-scale manipulation of phase separation in organic solar cells”, Appl. Phys. Lett. 92, 023307 (2008). http://dx.doi.org/10.1063/1.2835047CrossrefGoogle Scholar

  • [20] C.W. Chu, H. Yang, W.J. Hou, J. Huang, G. Li, and Y. Yang, “Control of the nanoscale crystallinity and phase separation in polymer solar cells”, Appl. Phys. Lett. 92, 103306 (2008). http://dx.doi.org/10.1063/1.2891884CrossrefGoogle Scholar

  • [21] J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, and A.J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer”, Adv. Mater. 18, 572–576 (2006). http://dx.doi.org/10.1002/adma.200501825CrossrefGoogle Scholar

  • [22] M.O. Reese, M.S. White, G. Rumbles, D.S. Ginley, and S.E. Shaheen, “Optimal negative electrodes for poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices”, Appl. Phys. Lett. 92, 053307 (2008). http://dx.doi.org/10.1063/1.2841067CrossrefGoogle Scholar

  • [23] W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater. 15, 1617–1622 (2005). http://dx.doi.org/10.1002/adfm.200500211CrossrefGoogle Scholar

  • [24] K. Kim, J. Liu, M.A.G. Namboothiry, and D.L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics”, Appl. Phys. Lett. 90, 163511 (2007). http://dx.doi.org/10.1063/1.2730756CrossrefGoogle Scholar

  • [25] C.J. Ko, Y.K. Lin, F.C. Chen, and C.W. Chu, “Modified buffer layers for polymer photovoltaic devices”, Appl. Phys. Lett. 90, 063509 (2007). http://dx.doi.org/10.1063/1.2437703CrossrefGoogle Scholar

  • [26] M. Reyes-Reyes, K. Kim, J. Dewald, R. Lopez-Sandoval, A. Avadhanula, S. Curran, and D.L. Carroll, “Meso-structure formation for enhanced organic photovoltaic cells”, Org. Lett. 7, 5749–5752 (2005). http://dx.doi.org/10.1021/ol051950yCrossrefGoogle Scholar

  • [27] R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, and T.A. Witten, “Capillary flow as the cause of ring stains from dried liquid drops”, Nature 389, 827–829 (1997). http://dx.doi.org/10.1038/39827CrossrefGoogle Scholar

  • [28] C.N. Hoth, P. Schilinsky, S.A. Choulis, and C.J. Brabec, “Printing highly efficient organic solar cells”, Nano Lett. 8, 2806–2813 (2008). http://dx.doi.org/10.1021/nl801365kCrossrefGoogle Scholar

  • [29] R. Green, A. Morfa, A.J. Ferguson, N. Kopidakis, G. Rumbles, and S.E. Shaheen, “Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition”, Appl. Phys. Lett. 92, 033301 (2008). http://dx.doi.org/10.1063/1.2836267CrossrefGoogle Scholar

  • [30] F.C. Chen, H.C. Tseng, and C.J. Ko, “Solvent mixtures for improving device efficiency of polymer photovoltaic devices”, Appl. Phys. Lett. 92, 103316 (2008). http://dx.doi.org/10.1063/1.2898153CrossrefGoogle Scholar

  • [31] G. Li, V. Shrotriya, J. Huangi, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater. 4, 864–868 (2005). http://dx.doi.org/10.1038/nmat1500CrossrefGoogle Scholar

  • [32] D. Gupta, M. Bag, and K.S. Narayan, “Area dependent efficiency of organic solar cells”, Appl. Phys. Lett. 93, 163301 (2008). http://dx.doi.org/10.1063/1.2998540CrossrefGoogle Scholar

  • [33] J.B. Emah, R.J. Curry, and S.R.P. Silva, “Low cost patterning of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) films to increase organic photovoltaic device efficiency”, Appl. Phys. Lett. 93, 103301 (2008). http://dx.doi.org/10.1063/1.2973342CrossrefGoogle Scholar

  • [34] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, and C.J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells”, Adv. Funct. Mater. 15, 1193–1196 (2005). http://dx.doi.org/10.1002/adfm.200400521CrossrefGoogle Scholar

  • [35] X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, and R.A.J. Janssen, “Nanoscale morphology of high-performance polymer solar cells”, Nano Lett. 5, 579–583 (2005). http://dx.doi.org/10.1021/nl048120iCrossrefGoogle Scholar

  • [36] F. Padinger, R.S. Rittberger, and N.S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Adv. Funct. Mater. 13, 85–88 (2003). http://dx.doi.org/10.1002/adfm.200390011CrossrefGoogle Scholar

  • [37] O. Yoshikawa, T. Sonobe, T. Sagawa, and S. Yoshikawa, “Single mode microwave irradiation to improve the efficiency of polymer solar cell based on poly(3-hexylthiophene) and fullerene derivative”, Appl. Phys. Lett. 94, 083301 (2009). http://dx.doi.org/10.1063/1.3077612CrossrefGoogle Scholar

  • [38] V. Shrotriya, “Polymer power”, Nat. Photonics 3, 447–449 (2009). http://dx.doi.org/10.1038/nphoton.2009.130CrossrefGoogle Scholar

  • [39] J. Bohandy, B.F. Kim, and F.J. Adrian, “Metal deposition from a supported metal film using an excimer laser”, J. Appl. Phys. 60, 1538–1539 (1986). http://dx.doi.org/10.1063/1.337287CrossrefGoogle Scholar

  • [40] G.B. Blanchet, C.R. Fincher, and I. Malajovich, “Laser evaporation and the production of pentacene films”, J. Appl. Phys. 94, 6181–6184 (2003). http://dx.doi.org/10.1063/1.1601681CrossrefGoogle Scholar

  • [41] R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer”, Appl. Phys. Lett. 91, 061103 (2007). http://dx.doi.org/10.1063/1.2759475CrossrefGoogle Scholar

  • [42] S.H. Ko, H. Pan, S.G. Ryu, N. Misra, C.P. Grigoropoulos, and H.K. Park, “Nanomaterial enabled laser transfer for organic light emitting material direct writing”, Appl. Phys. Lett. 93, 151110 (2008). http://dx.doi.org/10.1063/1.3001803CrossrefGoogle Scholar

  • [43] M.A. Rahman, P. Kumar, D.S. Park, and Y.B. Shim, “Electrochemical sensors based on organic conjugated polymers”, Sensors 8, 118–141 (2008). http://dx.doi.org/10.3390/s8010118CrossrefGoogle Scholar

  • [44] N.M. Kocherginsky, W. Lei, and Z. Wang, “Redox reactions without direct contact of the reactants. Electron and ion coupled transport through polyaniline membrane”, J. Phys. Chem. A109, 4010–4016 (2005). CrossrefGoogle Scholar

  • [45] Z.F. Li and E. Ruckenstein, “Improved surface properties of polyaniline films by blending with Pluronic polymers without the modification of the other characteristics”, J. Colloid Interf. Sci. 264, 362–369 (2003). http://dx.doi.org/10.1016/S0021-9797(03)00315-1CrossrefGoogle Scholar

  • [46] N.B. Clark and L.J. Maher, “Non-contact, radio frequency detection of ammonia with a printed polyaniline sensor”, React. Funct. Polym. 69, 594–600 (2009). http://dx.doi.org/10.1016/j.reactfunctpolym.2009.03.011CrossrefGoogle Scholar

  • [47] S. Mu, C. Chen, and J. Wang, “The kinetic behavior for the electrochemical polymerization of aniline in aqueous solution”, Synthetic Met. 88, 249–254 (1997). http://dx.doi.org/10.1016/S0379-6779(97)03863-0CrossrefGoogle Scholar

  • [48] A.C. Barton, S.D. Collyer, F. Davis, G.Z. Garifallou, G. Tsekenis, E. Tully, R. O’Kennedy, T. Gibson, P.A. Millner, and S.P.J. Higson, “Labeless AC impedimetric antibody-based sensors with pg ml-1 sensitivities for point-of-care biomedical applications”, Biosens. Bioelectron. 24, 1090–1095 (2009). http://dx.doi.org/10.1016/j.bios.2008.06.001Google Scholar

  • [49] A. Ramanavicius, A. Ramanaviciene, and A. Malinauskas, “Electrochemical sensors based on conducting polymer-polypyrrole”, Electrochim. Acta 51, 6025–6037 (2006). http://dx.doi.org/10.1016/j.electacta.2005.11.052CrossrefGoogle Scholar

  • [50] J. Jang, J. Ha, and J. Cho, “Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications”, Adv. Mater. 19, 1772–1775 (2007). http://dx.doi.org/10.1002/adma.200602127CrossrefGoogle Scholar

  • [51] J. Stejskal, I. Sapurina, J. Prokes, and J. Zemek, “In-situ polymerized polyaniline films”, Synthetic Met. 105, 195–202 (1999). http://dx.doi.org/10.1016/S0379-6779(99)00105-8CrossrefGoogle Scholar

  • [52] D.P. Banks, C. Grivas, I. Zergioti, and R.W. Eason, “Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor”, Opt. Express 16, 3249–3254 (2008). http://dx.doi.org/10.1364/OE.16.003249CrossrefGoogle Scholar

  • [53] H. Esrom, J.Y. Zhang, U. Kogelschatz, and A.J. Pedraza, “New approach of a laser-induced forward transfer for deposition of patterned thin metal films”, Appl. Surf. Sci. 86, 202–207 (1995). http://dx.doi.org/10.1016/0169-4332(94)00385-8CrossrefGoogle Scholar

  • [54] I. Zergioti, S. Mailis, N.A. Vainos, P. Papakonstantinou, C. Kalpouzos, C.P. Grigoropoulos, and C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses”, Appl. Phys. A66, 579–582 (1998). CrossrefGoogle Scholar

  • [55] D. Toet, P.M. Smith, T.W. Sigmon, and M.O. Thompson, “Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure”, J. Appl. Phys. 87, 3537–3546 (2000). http://dx.doi.org/10.1063/1.372378CrossrefGoogle Scholar

  • [56] B. Thomas, A.P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, “Experimental investigations of laser-induced forward transfer process of organic thin films”, Appl. Surf. Sci. 254, 1206–1210 (2007). http://dx.doi.org/10.1016/j.apsusc.2007.09.042CrossrefGoogle Scholar

  • [57] N.T. Kattamis, N.D. McDaniel, S. Bernhard, and C.B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules”, Appl. Phys. Lett. 94, 103306 (2009). http://dx.doi.org/10.1063/1.3098375CrossrefGoogle Scholar

  • [58] I. Zergioti, A. Karaiskou, D.G. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, “Femtosecond laser microprinting of biomaterials”, Appl. Phys. Lett. 86, 163902 (2005). http://dx.doi.org/10.1063/1.1906325CrossrefGoogle Scholar

  • [59] P. Serra, J.M. Fernandez-Pradas, M. Colina, M. Duocastella, J. Dominguez, and J.L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation”, JLMN 1, 236–242 (2006). http://dx.doi.org/10.2961/jlmn.2006.03.0017CrossrefGoogle Scholar

About the article

Published Online: 2010-09-18

Published in Print: 2010-12-01

Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-010-0045-4.

Export Citation

© 2010 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jinda Lin, Adam G. Hart, and Yong-qing Li
Applied Physics Letters, 2015, Volume 106, Number 17, Page 171906
I. Sta, M. Jlassi, M. Kandyla, M. Hajji, P. Koralli, R. Allagui, M. Kompitsas, and H. Ezzaouia
Journal of Alloys and Compounds, 2015, Volume 626, Page 87
M. Colina, A. Morales-Vilches, C. Voz, I. Martín, P. Ortega, A. Orpella, G. López, and R. Alcubilla
Applied Surface Science, 2015, Volume 336, Page 89
James A. Grant-Jacob, Benjamin Mills, Matthias Feinaeugle, Collin L. Sones, Gerrit Oosterhuis, Marc B. Hoppenbrouwers, and Robert W. Eason
Optical Materials Express, 2013, Volume 3, Number 6, Page 747
M. Kandyla, C. Pandis, S. Chatzandroulis, P. Pissis, and I. Zergioti
Applied Physics A, 2013, Volume 110, Number 3, Page 623
Daniel Tobjörk and Ronald Österbacka
Advanced Materials, 2011, Volume 23, Number 17, Page 1935

Comments (0)

Please log in or register to comment.
Log in