Jump to ContentJump to Main Navigation
Show Summary Details

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek


IMPACT FACTOR 2015: 1.611
Rank 98 out of 255 in category Electrical & Electronic Engineering and 43 out of 90 in Optics in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.624
Source Normalized Impact per Paper (SNIP) 2015: 1.387
Impact per Publication (IPP) 2015: 1.564

Open Access
Online
ISSN
1896-3757
See all formats and pricing

 


Select Volume and Issue

Issues

Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies

1Faculty of Physics, University of Warsaw, 7 Pasteura Str., 02-093, Warsaw, Poland

2Fiber Optics Communication Laboratory, State Engineering University of Armenia, 105 Terian Str., 0009, Yerevan, Armenia

3National Institute of Telecommunications, 1 Szachowa Str., 04-894, Warsaw, Poland

4Department of Photonics Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark

5Department of Applied Physics and Photonics Vrije Universiteit Brussel, (IR-TONA), 2 Pleinlaan Str., 1050, Brussels, Belgium

6Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blv., 1784, Sofia, Bulgaria

© 2010 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Opto-Electronics Review. Volume 18, Issue 4, Pages 446–457, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-010-0051-6, September 2010

Publication History

Published Online:
2010-09-18

Abstract

We characterize the sensitivity of imaging properties of a layered silver-TiO2 flat lens to fabrication inaccuracies. The lens is designed for approximately diffraction-free imaging with subwavelength resolution at distances in the order of a wavelength. Its operation may be attributed to self-collimation with a secondary role of Fabry-Perot resonant transmission, even though the first order effective medium description of the structure is inaccurate. Super-resolution is maintained for a broad range of overall thicknesses and the total thickness of the multilayer is limited by absorption. The tolerance analysis indicates that the resolution and transmission efficiency are highly sensitive to small changes of layer thicknesses.

Keywords: plasmonics; nanophotonics; nanolenses, super-resolution; metal-dielectric multilayers

  • [1] J.B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966–3969 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.3966 [Crossref]

  • [2] N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens”, Science 308, 534–537 (2005). http://dx.doi.org/10.1126/science.1108759 [Crossref]

  • [3] D.O.S. Melville and R.J. Blaikie, “Super-resolution imaging through a planar silver layer”, Opt. Express 13, 2127–2134 (2005). http://dx.doi.org/10.1364/OPEX.13.002127 [Crossref]

  • [4] Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens”, Nano Lett. 7, 403–408 (2007). http://dx.doi.org/10.1021/nl062635n [Crossref]

  • [5] P. Wróbel, J. Pniewski, T.J. Antosiewicz, and T. Szoplik, “Focusing radially polarized light by concentrically corrugated silver film without a hole”, Phys. Rev. Lett. 102, 183902 (2009). http://dx.doi.org/10.1103/PhysRevLett.102.183902 [Crossref] [Web of Science]

  • [6] Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging”, Opt. Express 15, 6947–6954 (2007). http://dx.doi.org/10.1364/OE.15.006947 [Web of Science] [Crossref]

  • [7] Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible”, Opt. Express 15, 7095–7102 (2007). http://dx.doi.org/10.1364/OE.15.007095 [Web of Science] [Crossref]

  • [8] E.A. Ray, M.J. Hampton, and R. Lopez, “Simple demonstration of visible evanescent-wave enhancement with far-field detection”, Opt. Lett. 34, 2048–2050 (2009). http://dx.doi.org/10.1364/OL.34.002048 [Web of Science] [Crossref]

  • [9] B. Wood, J.B. Pendry, and D.P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system”, Phys. Rev. B74, 115116 (2006). [Crossref]

  • [10] D.O.S. Melville and R.J. Blaikie, “Experimental comparison of resolution and pattern fidelity in single- and double-layer planar lens lithography”, J. Opt. Soc. Am. B23, 461–467 (2006). [Crossref]

  • [11] M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, and J. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks”, Opt. Express 15, 508–523 (2007). http://dx.doi.org/10.1364/OE.15.000508 [Crossref] [Web of Science]

  • [12] X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007). [Web of Science]

  • [13] D. de Ceglia, M.A. Vincenti, M.G. Cappeddu, M. Centini, N. Akozbek, A. DOrazio, J. Haus, M.J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-IR ranges”, Phys. Rev. A77, 033848 (2008). [Web of Science]

  • [14] M. Conforti, M. Guasoni, and C. De Angelis, “Subwavelength diffraction management”, Opt. Lett. 33, 2662–2664 (2008). http://dx.doi.org/10.1364/OL.33.002662 [Crossref]

  • [15] C.P. Moore, M.D. Arnold, P.J. Bones, and R.J. Blaikie, “Analysis and comparison of simulation techniques for silver superlenses”, Proc. Int. Conf. Nanoscience and Nanotechnology, ICONN 2008, 210–213 (2008).

  • [16] C.P. Moore, M.D. Arnold, P.J. Bones, and R.J. Blaikie, “Image fidelity for single-layer and multi-layer silver superlenses”, J. Opt. Soc. Am. A25, 911–918 (2008). http://dx.doi.org/10.1364/JOSAA.25.000911 [Crossref]

  • [17] C.P. Moore, R.J. Blaikie, and M.D. Arnold, “An improved transfer-matrix model for optical superlenses”, Opt. Express 17, 14260–14269 (2009). http://dx.doi.org/10.1364/OE.17.014260 [Crossref]

  • [18] R. Kotynski and T. Stefaniuk, “Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes”, J. Opt. A-Pure Appl. Op. 11, 015001 (2009). http://dx.doi.org/10.1088/1464-4258/11/1/015001 [Crossref] [Web of Science]

  • [19] N. Mattiucci, G. D’Aguanno, M. Scalora, M.J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: Application to superresolution”, Opt. Express 17, 17517–17529 (2009). http://dx.doi.org/10.1364/OE.17.017517 [Crossref] [Web of Science]

  • [20] Q.M. Quan, S.L. Zhu, and R.P. Wang, “Refraction in the fixed direction at the surface of dielectric/silver superlattice”, Phys. Lett. A359, 547–549 (2006). [Crossref]

  • [21] X. Li and F. Zhuang, “Multilayered structures with high subwavelength resolution based on the metal-dielectric composites”, J. Opt. Soc. Am. A26, 2521–2525 (2009). http://dx.doi.org/10.1364/JOSAA.26.002521 [Crossref]

  • [22] R. Kotyński and T. Stefaniuk, “Multiscale analysis of subwavelength imaging with metal-dielectric multilayers”, Opt. Lett. 35, 1133–1135 (2010). http://dx.doi.org/10.1364/OL.35.001133 [Crossref] [Web of Science]

  • [23] R. Kotyński, T. Stefaniuk, and A. Pastuszczak, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers”, ArXiv:1002.0658. (submitted to J. Appl. Phys. A, 2010) [Web of Science]

  • [24] P.A. Belov, C. Simovski, and P. Ikonen, “Canalization of subwavelength images by electro-magnetic crystals”, Phys. Rev. B71, 193105 (2005). [Crossref]

  • [25] P.A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime”, Phys. Rev. B73, 113110 (2006). [Crossref]

  • [26] M.A. Vincenti, A. D’Orazio, M.G. Cappeddu, N. Akozbek, M.J. Bloemer, and M. Scalora, “Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies”, J. Appl. Phys. 105, 103103 (2009). http://dx.doi.org/10.1063/1.3126712 [Web of Science] [Crossref]

  • [27] J.W. Goodman, Introduction to Fourier Optics, Roberts & Co Publ., 3rd ed., 2005.

  • [28] B. Saleh and M. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc, 2nd ed., 2007.

  • [29] R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers”, Opto-Electron. Rev. 18, 366–375 (2010), (in press, arXiv 1006.3669). http://dx.doi.org/10.2478/s11772-010-0044-5 [Web of Science] [Crossref]

  • [30] A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artec House Inc., Boston, 2nd ed., 2000.

  • [31] A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD”, Opt. Lett. 31, 2972–2974 (2006). http://dx.doi.org/10.1364/OL.31.002972 [Crossref]

  • [32] http://www.photond.com/products/crystalwave.htm (an overview of the computation engine implemented in the Crystal Wave tool by the Photon Design Ltd., Oxford).

  • [33] H.V. Baghdasaryan and T.M. Knyazyan, “Problem of plane EM wave self-action in multilayer structure: an exact solution”, Opt. Quant. Electron. 31, 1059–1072 (1999). http://dx.doi.org/10.1023/A:1007024312874 [Crossref]

  • [34] H.V. Baghdasaryan, T.M. Knyazyan, T.H. Baghdasaryan, and G.G. Eyramjyan, “Development of the method of single expression (MSE) for analysis of plane wave oblique incidence on multilayer structures having complex permittivity and permeability”, Proc. ICTON’2008, Vol. 1, 250–254 (2008).

  • [35] H.V. Baghdasaryan, T.M. Knyazyan, and G.G. Eyramjyan, “Electrodynamical analysis of a transmittive metal-dielectric microstructure by the method of single expression”, Proc. European Microwave Association 4, 76–81 (2008).

  • [36] H.V. Baghdasaryan and T.M. Knyazyan, “Modelling of strongly nonlinear sinusoidal Bragg gratings by the method of single expression”, Opt. Quant. Electron. 32, 869–883 (2000). http://dx.doi.org/10.1023/A:1007026830915 [Crossref]

  • [37] P. Markos and C. M. Soukoulis, Wave Propagation. From Electrons to Photonic Crystals and Left-handed Materials, Princeton University Press, Princeton and Oxford, 2008.

  • [38] O. Duyar, F. Placido, and H.Z. Durusoy, “Optimization of TiO2 films prepared by reactive electron beam evaporation of Ti3O5”, J. Phys. D. Appl. Phys. 41, 095307 (2008). http://dx.doi.org/10.1088/0022-3727/41/9/095307

  • [39] P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972). [Crossref]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tomasz Stefaniuk, Piotr Wróbel, Ewa Górecka, and Tomasz Szoplik
Nanoscale Research Letters, 2014, Volume 9, Number 1, Page 153
[2]
Tomasz Stefaniuk, Piotr Wróbel, Paweł Trautman, and Tomasz Szoplik
Applied Optics, 2014, Volume 53, Number 10, Page B237
[3]
A. Pastuszczak, M. Stolarek, and R. Kotyński
Opto-Electronics Review, 2013, Volume 21, Number 4

Comments (0)

Please log in or register to comment.