Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 19, Issue 2


Photoacoustic method of determination of quantum efficiency of luminescence in Mn2+ ions in Zn1−x−yBexMnySe crystals

M. Maliński
  • Department of Electronics and Computer Science Technical University of Koszalin, 2 Śniadeckich Str., 75-453, Koszalin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ł. Chrobak
  • Department of Electronics and Computer Science Technical University of Koszalin, 2 Śniadeckich Str., 75-453, Koszalin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Zakrzewski / K. Strzałkowski
Published Online: 2011-04-08 | DOI: https://doi.org/10.2478/s11772-011-0007-5


This paper presents step by step the procedure of determination of the quantum efficiency of luminescence of Mn2+ ions in the Zn1−x−yBexMnySe crystals. The method is based on the photoacoustic spectroscopy approach. In the paper, the experimental spectra of absorbance, transmission, absorption and photoacoustic spectra of the samples are presented and analyzed from the point of view of the possibility of determination of the quantum efficiency of Mn2+ ion luminescence at room temperature. It was determined experimentally that in the investigated crystals the quantum efficiency of luminescence in the Mn2+ ions is about 35%, 40%, 32% for the absorption peaks at 430 nm, 470 nm, and 510 nm, respectively, for Zn0.75Be0.2Mn0.05Se crystal.

Keywords: photoacoustic effect; photoacoustic spectroscopy

  • [1] N. Dai, H. Luo, F.C. Zhang, N. Samarth, M. Dobrowolska, and K.J. Furdyna, “Spin superlattice formation in ZnSe/Zn1−xMnxSe multilayers”, Phys. Rev. Lett. 67, 3824 (1991). http://dx.doi.org/10.1103/PhysRevLett.67.3824CrossrefGoogle Scholar

  • [2] M. Linnarson, E. Janzen, B. Monemar, M. Kleverman, and A. Thilderkvist, “Electronic structure of the GaAs:MnGa centre”, Phys. Rev. B55, 6938 (1997). CrossrefGoogle Scholar

  • [3] Le Van Khoi, J. Kossut, and R.R. Gałazka, “Optical identification of impurity levels in strongly phosphorus-doped wide-gap II–VI bulk semimagnetic semiconductors”, Phys. Status Solidi B 235, 44 (2003). http://dx.doi.org/10.1002/pssb.200301523CrossrefGoogle Scholar

  • [4] E. Oh, R.G. Alonso, I. Miotkowski, and A.K. Ramdas, “Raman scattering from vibrational and electronic excitations in a II–VI quaternary compound: Cd1−x−yZnxMnyTe”, Phys. Rev. B45, 10934 (1992). CrossrefGoogle Scholar

  • [5] F. Rozpłoch, J. Patyk, F. Firszt, S. Łęgowski, H. Męczyńska, J. Zakrzewski, and A. Marasek, “Raman, photoluminescence and photoacoustic investigations of Zn1−x−yBexMnySe mixed crystals”, Phys. Status Solidi B 229, 707 (2002). http://dx.doi.org/10.1002/1521-3951(200201)229:2<707::AID-PSSB707>3.0.CO;2-FCrossrefGoogle Scholar

  • [6] R. Fiederling, M. Kein, M. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L.W. Molenkamp, “Injection and detection of a spin polarized current in a n-i-p light emitting diode”, Nature 402, 787 (1999). http://dx.doi.org/10.1038/45502CrossrefGoogle Scholar

  • [7] F. Firszt, S. Łęgowski, H. Męczyńska, F. Rozpłoch, A. Marasek, K. Strzałkowski, J. Patyk, and L. Nowak, “Growth and properties of Zn1−x−yBexMny Se crystals”, Phys. Status Solidi B 244, 1669 (2007). http://dx.doi.org/10.1002/pssb.200675130CrossrefGoogle Scholar

  • [8] A.A. Wronkowska, K. Bejtka, H. Arwin, A. Wronkowski, F. Firszt, S. Łęgowski, H. Męczyńska, F. Rozpłoch, and A. Marasek, “IR ellipsometry and photoluminescence investigations of Zn1−xBexSe and Zn1−x−yBexMnySe mixed crystals”, Thin Solid Films 455, 256 (2004). http://dx.doi.org/10.1016/j.tsf.2003.11.206CrossrefGoogle Scholar

  • [9] F. Firszt, K. Strzałkowski, A.J. Zakrzewski, S. Łęgowski, H. Męczyńska, and A. Marasek, “Photoelectric and photothermal investigations of Zn1−x−yBexMnySe solid solutions”, Cryst. Res. Technol. 42, 1352 (2007). http://dx.doi.org/10.1002/crat.200711031Web of ScienceCrossrefGoogle Scholar

  • [10] A. Rosencwaig and A. Gersho, “Theory of the photoacoustic effect with solids”, J. Appl. Phys. 47, 64 (1976). http://dx.doi.org/10.1063/1.322296CrossrefGoogle Scholar

  • [11] C.A. Benett and R.R. Patty, “Thermal wave interferometry: a potential application of the photoacoustic effect”, Appl. Optics 21, 49 (1982). http://dx.doi.org/10.1364/AO.21.000049CrossrefGoogle Scholar

  • [12] M. Maliński, “Temperature distribution formulae-applications in photoacoustics”, Arch. Acoust. 27, 217 (2002). Google Scholar

  • [13] M. Grinberg, A. Mandelis, K. Fjedsted, and A. Othonos, “Spectroscopy and analysis of radiative and nonradiative processes in Ti3+:Al2O3 crystals”, Phys. Rev. B48, 5922 (1993). CrossrefGoogle Scholar

  • [14] M. Grinberg, A. Mandelis, and K. Fjedsted, “Theory of interconfigurational nonradiative transitions in transition-metal ions in solids and application to the Ti3+:Al2O3 system”, Phys. Rev. B48, 5935 (1993). CrossrefGoogle Scholar

  • [15] M. Grinberg and A. Mandelis, “Photopyroelectric-quantum-yield spectroscopy and quantum-mechanical photoexcitation-decay kinetics of the Ti3+ ion in Al2O3”, Phys. Rev. B49, 12496 (1994). CrossrefGoogle Scholar

  • [16] M. Grinberg, A. Sikorska, B. Kukliński, and S. Zachara, “Photoacoustic characterization of YGG and YAG doped with Cr and Ca”, AIP Conf. Proc. 463, 241 (1999). Google Scholar

  • [17] M. Grinberg, A. Sikorska, and S. Kaczmarek, “Photoacoustic spectroscopy of YAG crystals doped with Ce”, J. Alloy. Compd. 300, 158 (2000). http://dx.doi.org/10.1016/S0925-8388(99)00716-1CrossrefGoogle Scholar

  • [18] A. Śliwiński, M. Grinberg, and A. Sikorska, “Photoacoustic spectra as a tool for studying nonradiative relaxation processes in luminescence centres in solids”, Mol. Quant. Acoustics 22, 261 (2001). Google Scholar

  • [19] E. Rodriguez, J.O. Tocho, and F. Cusso, “Simultaneous multiple-wavelength photoacoustic and luminescence experiments: A method for fluorescent-quantum-efficiency determination”, Phys. Rev. B47, 14049 (1993). CrossrefGoogle Scholar

  • [20] G.A. Torchia, D. Schinca, N.M. Khaidukov, and J.O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals”, Opt. Mater. 20, 301 (2002). http://dx.doi.org/10.1016/S0925-3467(02)00091-5CrossrefGoogle Scholar

  • [21] G.A. Torchia, J.A. Munoz, F. Cusso, F. Jaque, and J.O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in co-doped crystals of LiNbO3: ZnO determined by simultaneous multiple-wavelength photoacoustic and luminescence experiments”, J. Lumin. 92, 317 (2001). http://dx.doi.org/10.1016/S0022-2313(01)00161-2CrossrefGoogle Scholar

  • [22] H. Yang, S. Santra, and P.H. Holloway, “Syntheses and applications of Mn-doped II–VI semiconductor nanocrystals”, J. Nanosci. Nanotechno. 5, 1364–1375 (2005). http://dx.doi.org/10.1166/jnn.2005.308CrossrefGoogle Scholar

  • [23] F. Firszt, S. Łęgowski, H. Męczyńska, J. Szatkowski, W. Paszkowicz, and K. Godwod, “Growth and characterisation of Zn1−xBexSe mixed crystals”, J. Cryst. Growth 184, 1335 (1998). http://dx.doi.org/10.1016/S0022-0248(98)80277-7CrossrefGoogle Scholar

  • [24] Ł. Chrobak and M. Maliński, “Transmission and absorption based photoacoustic methods of determination of the optical absorption spectra of Si samples — comparison”, Solid State Commun. 149, 1600 (2009). http://dx.doi.org/10.1016/j.ssc.2009.06.038Web of ScienceCrossrefGoogle Scholar

  • [25] A. Rosencwaig, “Photo-acoustic spectroscopy of solids”, Rev. Sci. Instrum. 48, 1133 (1997). http://dx.doi.org/10.1063/1.1135213CrossrefGoogle Scholar

About the article

Published Online: 2011-04-08

Published in Print: 2011-06-01

Citation Information: Opto-Electronics Review, Volume 19, Issue 2, Pages 183–188, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-011-0007-5.

Export Citation

© 2011 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in