Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 19, Issue 3

Issues

Terahertz detectors and focal plane arrays

A. Rogalski / F. Sizov
  • Institute of Semiconductor Physics of the Ukrainian National Academy of Sciences, Kiev, 03028, 41 Nauki Ave, Ukraine
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-03-07 | DOI: https://doi.org/10.2478/s11772-011-0033-3

Abstract

Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands.

In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

Keywords: direct and heterodyne THz detectors; focal plane arrays; Schottky barrier diodes; SIS detectors; SIN detectors; hot electron bolometers; transition edge sensors; field-effect transistor detectors; extrinsic photodetectors; performance limits; novel THz detectors

  • [1] P.H. Siegel, “Terahertz technology”, IEEE T. Microw. Theory 50, 910–928 (2002). http://dx.doi.org/10.1109/22.989974CrossrefGoogle Scholar

  • [2] P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging Part I: Introduction and techniques”, Int. J. Infrared Millimeter Waves 27, 465–480 (2006). http://dx.doi.org/10.1007/s10762-006-9103-xCrossrefGoogle Scholar

  • [3] P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging Part II: Instrumets”, Int. J. Infrared Milli. 27, 631–655 (2006). http://dx.doi.org/10.1007/s10762-006-9109-4CrossrefGoogle Scholar

  • [4] G. Chattopadhyay, “Submillimeter-wave coherent and incoherent sensors for space applications,” in Sensors. Advancements in Modeling, Design Issues, Fabrication and Practical Applications, pp. 387–414, edited by S.C. Mukhopadhyay and R.Y.M. Huang, Springer, New York, 2008. Google Scholar

  • [5] T.W. Crowe, W.L. Bishop, D.W. Porterfield, J.L. Hesler, and R.M. Weikle, “Opening the terahertz window with integrated diode circuits”, IEEE J. Solid-St. Circ. 40, 2104–2110 (2005). http://dx.doi.org/10.1109/JSSC.2005.854599CrossrefGoogle Scholar

  • [6] D. Dragoman and M. Dragoman, “Terahertz fields and applications”, Prog. Quant. Electron. 28, 1–66 (2004). http://dx.doi.org/10.1016/S0079-6727(03)00058-2CrossrefGoogle Scholar

  • [7] J. Wei, D. Olaya, B.S. Karasik, S.V. Pereverzev, A.V. Sergeev, and M.E. Gershenzon, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics”, Nat. Nanotechnol. 3, 496–500 (2008). http://dx.doi.org/10.1038/nnano.2008.173CrossrefGoogle Scholar

  • [8] A.H. Lettington, I.M. Blankson, M. Attia, and D. Dunn, “Review of imaging architecture”, Proc. SPIE 4719, 327–340 (2002). http://dx.doi.org/10.1117/12.477457CrossrefGoogle Scholar

  • [9] A.W. Blain, I. Smail, R.J. Ivison, J.-P. Kneib, and D.T. Frayer, “Submillimetre galaxies”, Phys. Rep. 369, 111–176 (2002). http://dx.doi.org/10.1016/S0370-1573(02)00134-5CrossrefGoogle Scholar

  • [10] D. Leisawitz, W.C. Danchi, M.J. DiPirro, L.D. Feinberg, D.Y. Gezari, M. Hagopian, W.D. Langer, J.C. Mather, S.H. Moseley, M. Shao, R.F. Silverberg, J.G. Staguhn, M.R. Swain, H.W. Yorke, and X. Zhang, “Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers”, Proc. SPIE 4013, 36–46 (2000). http://dx.doi.org/10.1117/12.393957CrossrefGoogle Scholar

  • [11] “10 emerging technologies that will change your world”, Technology Review, 32–50, February 2004. Google Scholar

  • [12] J. Zmuidzinas and P.L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics”, Proc. IEEE 92, 1597–1616 (2004). http://dx.doi.org/10.1109/JPROC.2004.833670CrossrefGoogle Scholar

  • [13] B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology”, Nat. Mater. 1, 26–33 (2002). http://dx.doi.org/10.1038/nmat708CrossrefGoogle Scholar

  • [14] D. Mittleman, Sensing with Terahertz Radiation, Springer-Verlag, Berlin, 2003. http://dx.doi.org/10.1007/978-3-540-45601-8CrossrefGoogle Scholar

  • [15] E.R. Brown, “Fundamentals of terrestrial millimetre-wave and THz remote sensing”, Int. J. High Speed Electron. 13, 99–1097 (2003). Google Scholar

  • [16] R.M. Woodward, “Terahertz technology in global homeland security”, Proc. SPIE 5781, 22–31 (2005). http://dx.doi.org/10.1117/12.606392CrossrefGoogle Scholar

  • [17] D.L. Woolard, R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?”, Proc. IEEE 93, 1722–1743 (2005). http://dx.doi.org/10.1109/JPROC.2005.853539CrossrefGoogle Scholar

  • [18] H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system”, Opt. Express 14, 9130–9141 (2006). http://dx.doi.org/10.1364/OE.14.009130CrossrefGoogle Scholar

  • [19] M. Tonouchi, “Cutting-edge terahertz technology”, Nat. Photonics 1, 97–105 (2007). http://dx.doi.org/10.1038/nphoton.2007.3CrossrefGoogle Scholar

  • [20] A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology. Fundamentals and Applications, Springer, Berlin, 2011. Google Scholar

  • [21] T.G. Phillips and J. Keene, “Submillimeter astronomy”, Proc. IEEE 80, 1662–1678 (1992). http://dx.doi.org/10.1109/5.175248CrossrefGoogle Scholar

  • [22] R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kuerner, “Short-range ultra-broadband terahertz communications: concept and perspectives”, IEEE Antenn. Propag. M. 49, 24–35 (2007). http://dx.doi.org/10.1109/MAP.2007.4455844CrossrefGoogle Scholar

  • [23] F. Sizov, “THz radiation sensors”, Opto-Electron. Rev. 18, 10–36 (2010). http://dx.doi.org/10.2478/s11772-009-0029-4CrossrefGoogle Scholar

  • [24] F. Sizov and A. Rogalski, “THz detectors”, Prog. Quant. Electron. 34, 278–347 (2010). http://dx.doi.org/10.1016/j.pquantelec.2010.06.002CrossrefGoogle Scholar

  • [25] S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range”, Nature 403, 405–407 (2000). http://dx.doi.org/10.1038/35000166CrossrefGoogle Scholar

  • [26] S. Komiyama, “Single-photon detectors in terahertz region”, IEEE J. Sel. Top. Quant. 17, 54–66 (2011). http://dx.doi.org/10.1109/JSTQE.2010.2048893CrossrefGoogle Scholar

  • [27] G. Chattopadhyay, “Heterodyne arrays at submillimeter wavelengths”, 38-th General Assembly of Int. Union of Radio Science, New Delhi, October, 2005. Google Scholar

  • [28] P.F. Goldsmith, Ph. Appleton, L. Armus, J. Bauer, D. Benford, A. Blaind, M. Bradford, G. Bryden, M. Dragovan, M. Harwit, G. Helou, W.D. Langer, D. Leisawitz, C. Paineb, and H. Yorke, “CALISTO: The cryogenic aperture large infrared space telescope observatory”, http://www.ipac.caltech.edu/DecadalSurvey/farir.html]). Google Scholar

  • [29] M. Harwit, G. Helou, L. Armus, C.M. Bradford, P.F. Goldsmith, M. Hauser, D. Leisawitz, D.F. Lester, G. Rieke, and S.A. Rinehart, “Far-infrared/submillimeter astronomy from space tracking an evolving universe and the emergence of life”, http://www.ipac.caltech.edu/DecadalSurvey/farir.html Google Scholar

  • [30] J.J. Bock, “Superconducting detector arrays for far-infrared to mm-wave astrophysics”, http://cmbpol.uchicago.edu/depot/pdf/white-paper_j-bock.pdf Google Scholar

  • [31] S. Hargreaves and R.A. Lewis, “Terahertz imaging: Materials and methods”, J. Mater. Sci.: Mater. Electron. 18, S299–S303 (2007). http://dx.doi.org/10.1007/s10854-007-9220-xCrossrefGoogle Scholar

  • [32] N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Non-destructive sub-THz CW imaging”, Proc. SPIE 5727, 132–142 (2005). http://dx.doi.org/10.1117/12.590539CrossrefGoogle Scholar

  • [33] A. Dobroiu, M. Yamashita, Y.N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward oscillator”, Appl. Opt. 43, 5637–5646 (2004). http://dx.doi.org/10.1364/AO.43.005637CrossrefGoogle Scholar

  • [34] A.W.M. Lee, Q. Qin, S. Kumar, B.S. Williams, Q. Hu, and J.L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett. 89, 141125 (2006). http://dx.doi.org/10.1063/1.2360210CrossrefGoogle Scholar

  • [35] A.W.M. Lee, B.S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320×240 microbolometer focal-plane array”, IEEE Photon. Tech. L. 18, 1415–1417 (2006). http://dx.doi.org/10.1109/LPT.2006.877220CrossrefGoogle Scholar

  • [36] F.F. Sizov, V.P. Reva, A.G. Golenkov, and V.V. Zabudsky, “Uncooled detector challenges for THz/sub-THz arrays imaging”, J Infrared Millim. Te., DOI 10.1007/s10762-011-9789-2 (2011). CrossrefGoogle Scholar

  • [37] M.A. Kinch and B.V. Rollin, “Detection of millimetre and sub-millimetre wave radiation by free carrier absorption in a semiconductor”, Brit. J. Appl. Phys. 14, 672–676 (1963). http://dx.doi.org/10.1088/0508-3443/14/10/317CrossrefGoogle Scholar

  • [38] Y. Nakagawa and H. Yoshinaga, “Characteristics of high-sensitivity Ge bolometer”, Jpn. J. Appl. Phys. 9, 125–131 (1970). http://dx.doi.org/10.1143/JJAP.9.125CrossrefGoogle Scholar

  • [39] T.-L. Hwang, S.E. Scharz, and D.B. Rutledge, “Microbolometers for infrared detection”, Appl. Phys. Lett. 34, 773–776 (1979). http://dx.doi.org/10.1063/1.90669CrossrefGoogle Scholar

  • [40] E.E. Haller, M.R. Hueschen, and P.L. Richards, “Ge:Ga photoconductors in low infrared backgrounds”, Appl. Phys. Lett. 34, 495–497 (1979). http://dx.doi.org/10.1063/1.90861CrossrefGoogle Scholar

  • [41] P.L. Richards, “Bolometers for infrared and millimeter waves”, J. Appl. Phys. 76, 1–24 (1994). http://dx.doi.org/10.1063/1.357128CrossrefGoogle Scholar

  • [42] J.E. Huffman, “Infrared detectors for 2 to 220 μm astronomy”, Proc. SPIE 2274, 157–169 (1995). http://dx.doi.org/10.1117/12.189241CrossrefGoogle Scholar

  • [43] W.W. Hübers, S.G. Pavlov, K. Holldack, U. Schade, and G. Wüstefeld, “Long wavelength response of unstressed and stressed Ge:Ga detectors”, Proc. SPIE 6275, 627505 (2008). http://dx.doi.org/10.1117/12.671580CrossrefGoogle Scholar

  • [44] A. Poglish, R.O. Katterloher, R. Hoenle, J.W. Beeman, E.E. Haller, H. Richter, U. Groezinger, N.M. Haegel, and A. Krabbe, “Far-infrared photoconductors for Herschel and SO-FIA”, Proc. SPIE 4855, 115–128 (2003). http://dx.doi.org/10.1117/12.459184CrossrefGoogle Scholar

  • [45] M. Kenyon, P.K. Day, C.M. Bradford, J.J. Bock, and H.G. Leduc, “Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy”, Proc. SPIE 6275, 627508 (2006). http://dx.doi.org/10.1117/12.672036CrossrefGoogle Scholar

  • [46] A.D. Turner, J.J. Bock, J.W. Beeman, J. Glenn, P.C. Hargrave, V.V. Hristov, H.T. Nguyen, F. Rahman, S. Sethuraman, and A.L. Woodcraft, “Silicon nitride micromesh bolometer array for submillimeter astrophysics”, Appl. Optics 40, 4921–4932 (2001). http://dx.doi.org/10.1364/AO.40.004921CrossrefGoogle Scholar

  • [47] B.S. Karasik, D. Olaya, J. Wei, S. Pereverzev, M.E. Gershenson, J.H. Kawamura, W.R. McGrath, and A. V. Sergeev, “Record-low NEP in hot-electron titanium nanobolometers”, IEEE T. Appl. Supercon. 17, 293–297 (2007). http://dx.doi.org/10.1109/TASC.2007.897167CrossrefGoogle Scholar

  • [48] H.-W. Hübers, “Terahertz heterodyne receivers”, IEEE J. Sel. Top. Quant. 14, 378–391 (2008). http://dx.doi.org/10.1109/JSTQE.2007.913964CrossrefGoogle Scholar

  • [49] D.J. Benford, “Transition edge sensor bolometers for CMB polarimetry”, http://cmbpol.uchicago.edu/workshops/technology2008/depot/cmbpol_technologies_benford_jcps_4. pdf Google Scholar

  • [50] P.L. Richards, “Cosmic microwave background experiments — past, present and future”, http://sciencestage.com/d/5334058/ Google Scholar

  • [51] F. Sizov, Photoelectronics for Vision Systems in Invisible Spectral Ranges, Akademperiodika, Kiev, 2008. (in Russian). Google Scholar

  • [52] N. Kopeika, A System Engineering Approach to Imaging, SPIE Optical Eng. Press, Bellingham, 1998. Google Scholar

  • [53] A.D. Turner, J.J. Bock, J.W. Beeman, J. Glenn, P.C. Hargrave, V.V. Hristov, H.T. Nguyen, F. Rahman, S. Sethuraman, and A.L. Woodcraft, “Silicon nitride micromesh bolometer array for submillimeter astrophysics”, Appl. Optics 40, 4921–4932 (2001). http://dx.doi.org/10.1364/AO.40.004921CrossrefGoogle Scholar

  • [54] “Detectors needs for long wavelength astrophysics”, A Report by the Infrared, Submillimeter, and Millimeter Detector Working Group, June 2002; http://safir.gsfc.nasa.gov/docs/ISMDWG_final.pdf Google Scholar

  • [55] J. Glenn, P.A.R. Ade, M. Amarie, J.J. Bock, S.F. Edgington, A. Goldin, S. Golwala, D. Haig, A.E. Lange, G. Laurent, P.D. Maudkopf, M. Yun, and H. Nguyen, “Current status of Bolocam: a large-format millimeter-wave bolometer camera”, Proc. SPIE 4855, 30–40 (2003). http://dx.doi.org/10.1117/12.459369CrossrefGoogle Scholar

  • [56] G.M. Voellmer, C.A. Allen, M.J. Amato, S.R. Babu, A.E. Bartels, D.J. Benford, R.J. Derro, C.D. Dowell, D.A. Harper, M.D. Jhabvala, S.H. Moseley, T. Rennick, P.J. Shirron, W.W. Smith, and J.G. Staguhn, “Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II”, Proc. SPIE 4855, 63–72 (2003). http://dx.doi.org/10.1117/12.459315CrossrefGoogle Scholar

  • [57] J.G. Staguhn, D.J. Benford, F. Pajot, T.J. Ames, J.A. Chervenak, E.N. Grossman, K.D. Irwin, B. Maffei, S.H. Moseley, T.G. Phillips, C.D. Reintsema, C. Rioux, R.A. Shafer, and G.M. Vollmer, “Astronomical demonstration of superconducting bolometer arrays”, Proc. SPIE 4855, 100–107 (2003). http://dx.doi.org/10.1117/12.459377CrossrefGoogle Scholar

  • [58] T.W. Crowe, R.J. Mattauch, H.-P. Roser, W.L. Bishop, W.C.B. Peatman, and X. Liu, “GaAs Schottky diodes for THz mixing applications”, Proc. IEEE 80, 1827–1841 (1992). http://dx.doi.org/10.1109/5.175258CrossrefGoogle Scholar

  • [59] G.L. Carr, M.C. Martin, W.R. McKinney, G.R. Neil, K. Jordan, and G.P. Williams, “High power terahertz radiation from relativistic electrons”, Nature 420, 153 (2002). http://dx.doi.org/10.1038/nature01175CrossrefGoogle Scholar

  • [60] M. Rodwell, E. Lobisser, M. Wistey, V. Jain, A. Baraskar, E. Lind, J. Koo, B. Thibeault, A.C. Gossard, Z. Griffith, J. Hacker, M. Urteaga, D. Mensa, R. Pierson, and B. Brar, “Development of THz transistors and (300–3000 GHz) sub-mm-wave integrated circuits”, The 11th Inter. Symp. on Wireless Personal Multimedia Communications (WPMC 2008); http://www.ece.ucsb.edu/Faculty/Rodwell/publications/2008_9_sept_wpmc_rodwell_digest.pdf Google Scholar

  • [61] B.S. Williams, “Terahertz quantum-cascade lasers”, Nat. Photonics 1, 517–525 (2007). http://dx.doi.org/10.1038/nphoton.2007.166CrossrefGoogle Scholar

  • [62] J.R. Tucker and M.J. Feldman, “Quantum detection at millimeter wavelength”, Rev. Mod. Phys. 57, 1055–1113 (1985). http://dx.doi.org/10.1103/RevModPhys.57.1055CrossrefGoogle Scholar

  • [63] C.M. Bradford, B.J. Naylor, J. Zmuidzinas, J.J. Bock, J. Gromke, H. Nguyen, M. Dragovan, M. Yun, L. Earle, J. Glenn, H. Matsuhara, P.A.R. Ade, and L. Duband, “WaFIRS: A waveguide far-IR spectrometer: Enabling spectroscopy of high-z galaxies in the far-IR and submillimeter”, Proc. SPIE 4850, 1137–1148 (2003). http://dx.doi.org/10.1117/12.461572CrossrefGoogle Scholar

  • [64] M. Kenyon, P.K. Day, C.M. Bradford, J.J. Bock, and H.G. Leduc, “Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy”, Proc. SPIE 6275, 627508 (2006). http://dx.doi.org/10.1117/12.672036CrossrefGoogle Scholar

  • [65] B.S. Karasik and R. Cantor, “Optical NEP in hot-electron nanobolometers”, 21 stInternational Symposium on Space Terahertz Technology, Oxford, 23–25 March, 2010. Google Scholar

  • [66] J.C. Mather, E.S. Cheng, D.A. Cottingham, R.E. Eplee, D.J. Fixsen, T. Hewagama, R.B. Isaacman, K.A. Jensen, S.S. Meyer, P.D. Noerdlinger, S.M. Read, L.P. Rosen, R.A. Shafer, E.L. Wright, C.L. Bennett, N.W. Boggess, M.G. Hauser, T. Kelsall, S.H. Moseley, R.F. Silverberg, G.F. Smoot, R. Weiss, and D.T. Wilkinson, “Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument”, Astrophys. J. 420, 439–444 (1994). http://dx.doi.org/10.1086/173574CrossrefGoogle Scholar

  • [67] J. Dunkley, A. Amblard, C. Baccigalupi, M. Betoule, D. Chuss, A. Cooray, J. Delabrouille, C. Dickinson, G. Dobler, J. Dotson, H.K. Eriksen, D. Finkbeiner, D. Fixsen, P. Fosalba, A. Fraisse, C. Hirata, A. Kogut, J. Kristiansen, C. Lawrence, A.M. Magalhaes, M.A. Miville-Deschenes, S. Meyer, A. Miller, S.K. Naess, L. Page, H.V. Peiris, N. Phillips, E. Pierpaoli, G. Rocha, J.E. Vaillancourt, and L. Verde, “A program of technology development and of sub-orbital observations of the cosmic microwave background polarization leading to and including a satellite mission”, A Report for the Astro-2010 Decadal Committee on Astrophysics, April, 2009. Google Scholar

  • [68] D.H. Auston, “Picosecond optoelectronic switching and gating in silicon”, Appl. Phys. Lett. 26, 101–103 (1975). http://dx.doi.org/10.1063/1.88079CrossrefGoogle Scholar

  • [69] P. LeFur and D.H. Auston, “A kilovolt picosecond optoelectronic switch and Pockels cell”, Appl. Phys. Lett. 28, 21–33 (1976). http://dx.doi.org/10.1063/1.88565CrossrefGoogle Scholar

  • [70] J.A. Valdmani, G. Mourou, and C.W. Gabel, “Picosecond electrooptic sampling system”, Appl. Phys. Lett. 41, 211–212 (1982). http://dx.doi.org/10.1063/1.93485CrossrefGoogle Scholar

  • [71] D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with teraHz beams of dielectrics and semiconductors”, J. Opt. Soc. B7, 2006–2015 (1990). CrossrefGoogle Scholar

  • [72] M. Tani, Y. Hirota, C. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas”, Int. J. Infrared Milli. 27, 531–546 (2006). http://dx.doi.org/10.1007/s10762-006-9105-8CrossrefGoogle Scholar

  • [73] D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging”, Appl. Phys. B, DOI 10.1007/s003409900011 (1999). CrossrefGoogle Scholar

  • [74] W.L. Chan, J. Deibel, and D.M. Mittleman, “Imaging with terahertz radiation”, Rep. Prog. Phys. 70, 1325–1379 (2007). http://dx.doi.org/10.1088/0034-4885/70/8/R02CrossrefGoogle Scholar

  • [75] L. Xu, X.-C. Zhang, and D.H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials”, Appl. Phys. Lett. 61, 1784–1786 (1992). http://dx.doi.org/10.1063/1.108426CrossrefGoogle Scholar

  • [76] E.R. Brown, K.A. McIntosh, F.W. Smith, K.B. Nichols, M.J. Manfra, C.L. Dennis, and J.P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer”, Appl. Phys. Lett. 64, 3311–3313 (1994). http://dx.doi.org/10.1063/1.111289CrossrefGoogle Scholar

  • [77] M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs based photoconductive antenna using 1.55 μm probe”, Appl. Phys. Lett. 77, 1396–1398 (2000). http://dx.doi.org/10.1063/1.1289914CrossrefGoogle Scholar

  • [78] M. Suzukia and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femto-second optical pulses”, Appl. Phys. Lett. 86, 163504 (2005). http://dx.doi.org/10.1063/1.1901817CrossrefGoogle Scholar

  • [79] H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices”, Appl. Phys. Lett. 92, 163502 (2008). http://dx.doi.org/10.1063/1.2909539CrossrefGoogle Scholar

  • [80] D.P. Neikirk, D.B. Rutledge, and M.S. Mucha, “Far-infrared imaging antenna arrays”, Appl. Phys. Lett. 40, 203–205 (1982). http://dx.doi.org/10.1063/1.93053CrossrefGoogle Scholar

  • [81] D.B. Rutledge, D.P. Neikirk, and D.P. Kasilingam, “Integrated-circuit antennas”, in: Infrared and Millimeter Waves, Vol. 10, pp. 1–90, ed. K.J. Button, Academic Press, New York, 1983. Google Scholar

  • [82] J. Zhang, Y. Hong, S.L. Braunstein, and K.A. Shore, “Terahertz pulse generation and detection with LT-GaAs photoconductive antenna”, IEE P-Optoelectron. 151, 98–101 (2004). http://dx.doi.org/10.1049/ip-opt:20040113CrossrefGoogle Scholar

  • [83] E.R. Brown, A.W.M. Lee, B.S. Navi, and J.E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region”, Microw. Opt. Techn. Let. 48, 524–529 (2006). http://dx.doi.org/10.1002/mop.21398CrossrefGoogle Scholar

  • [84] J. Grade, P. Haydon, and D. van der Weide, “Electronic terahertz antennas and probes for spectroscopic detection and diagnostics”, Proc. IEEE 95, 1583–1591 (2007). http://dx.doi.org/10.1109/JPROC.2007.898900CrossrefGoogle Scholar

  • [85] R.C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors”, P. IRE 47, 1495–1502 (1959). http://dx.doi.org/10.1109/JRPROC.1959.287047CrossrefGoogle Scholar

  • [86] A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2011. Google Scholar

  • [87] T. Ueda, Z. An, and S. Komiyama, “Temperature dependence of novel single-photon detectors in the long-wavelength infrared range”, J. Infrared Millim. Te.; DOI 10.1007/s10762-010-9659-3 (2010). CrossrefGoogle Scholar

  • [88] A.G.U. Perera, G. Ariyawansaa, P.V.V. Jayaweeraa, S.G. Matsika, M. Buchanan, and H.C. Liu, “Semiconductor terahertz detectors and absorption enhancement using plasmons”, Microelectron. J. 39, 601–606 (2008). http://dx.doi.org/10.1016/j.mejo.2007.07.086CrossrefGoogle Scholar

  • [89] H.C. Liu, H. Luo, C.-Y. Song, Z.R. Wasilewski, A.J. SpringThorpe, and J.C. Cao, “Terahertz quantum well photodetectors”, IEEE J. Sel. Top. Quant. 14, 374–377 (2008). http://dx.doi.org/10.1109/JSTQE.2007.910710CrossrefGoogle Scholar

  • [90] D.G. Esaev, M.B.M. Rinzan, S.G. Matsik, and A.G.U. Perera, “Design and optimization of GaAs/AlGaAs hetero-junction infrared detectors”, J. Appl. Phys. 96, 4588–4597 (2004); A.G.U. Perera and W.Z. Shen, “GaAs homojunction interfacial workfunction internal photoemission (HIWIP) far-infrared devices”, Opto-Electron Rev. 7, 153–180 (1999). http://dx.doi.org/10.1063/1.1786342CrossrefGoogle Scholar

  • [91] H.C. Liu, “Quantum dot infrared photodetector”, Opto-Electron. Rev. 11, 1–5 (2003). Google Scholar

  • [92] J.A. Ratches, “Current and future trends in military night vision applications”, Ferroelectrics 342, 183–192 (2006). http://dx.doi.org/10.1080/00150190600946351CrossrefGoogle Scholar

  • [93] M. Kohin and N. Butler, “Performance limits of uncooled VOx microbolometer focal-plane arrays”, Proc. SPIE 5406, 447–453 (2004). http://dx.doi.org/10.1117/12.542482CrossrefGoogle Scholar

  • [94] W. Kruse, L.D. McGlauchlin and R.B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962. Google Scholar

  • [95] E.H. Putley, “Thermal detectors”, in Optical and Infrared Detectors, pp. 71–100, edited by R.J. Keyes, Springer, Berlin, 1977. Google Scholar

  • [96] P.W. Kruse, Uncooled Thermal Imaging, SPIE Press, Bellingham, 2001. http://dx.doi.org/10.1117/3.415351CrossrefGoogle Scholar

  • [97] G.H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter, Cambridge University Press, Cambridge, 2003. Google Scholar

  • [98] W. Whatmore, “Pyroelectric devices and materials”, Rep. Prog. Phys. 49, 1335–1386 (1986). http://dx.doi.org/10.1088/0034-4885/49/12/002CrossrefGoogle Scholar

  • [99] P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films”, Rep. Prog. Phys. 64, 1339–1338 (2001). http://dx.doi.org/10.1088/0034-4885/64/10/203CrossrefGoogle Scholar

  • [100] V.G. Bozhkov, “Semiconductor detectors, mixers, and frequency multipliers for the terahertz band”, Radiophys. Quantum. El. 46, 631–656 (2003). http://dx.doi.org/10.1023/B:RAQE.0000024993.40125.2bCrossrefGoogle Scholar

  • [101] A. Van Der Ziel, “Infrared detection and mixing in heavily doped Schottky barrier diodes”, J. Appl. Phys. 47, 2059–2068 (1976). http://dx.doi.org/10.1063/1.322936CrossrefGoogle Scholar

  • [102] H.A. Watson, Microwave Semiconductor Devices and their Circuit Applications, McGraw-Hill, New York, 1969. Google Scholar

  • [103] E.J. Becklake, C.D. Payne, and B.E. Pruer, “Submillimetre performance of diode detectors using Ge, Si and GaAs”, J. Phys. D: Appl. Phys. 3, 473–481 (1970). http://dx.doi.org/10.1088/0022-3727/3/4/306CrossrefGoogle Scholar

  • [104] D.T. Young and J.C. Irvin, “Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique”, Proc. IEEE 53, 2130–2132 (1965). http://dx.doi.org/10.1109/PROC.1965.4511CrossrefGoogle Scholar

  • [105] T.W. Crowe, D.P. Porterfield, J.L. Hesler, W.L. Bishop, D.S. Kurtz, and K. Hui, “Terahertz sources and detectors”, Proc SPIE 5790, 271–280 (2005). http://dx.doi.org/10.1117/12.604309CrossrefGoogle Scholar

  • [106] H.P. Röser, H.-W. Hübers, E Bründermann, and M.F. Kimmitt, “Observation of mesoscopic effects in Schottky diodes at 300 K when used as mixers at THz frequencies”, Semicond. Sci. Tech. 11, 1328–1332 (1996). http://dx.doi.org/10.1088/0268-1242/11/9/014CrossrefGoogle Scholar

  • [107] T.W. Crowe and W.C.B. Peatman, “GaAs Schottky diodes for mixing applications beyond 1 THz”, 2nd Int. Symp. on Space Terahertz Technology 323–339, Pasadena, February 26–28, 1991, http://www.nrao.edu/meetings/isstt/papers/1991/1991323339.pdf Google Scholar

  • [108] T.W. Crowe, “GaAs Schottky barrier mixer diodes for the frequency range 1–10 THz”, Int. J. Infrared Milli. 11, 765–777 (1990). http://dx.doi.org/10.1007/BF01010045CrossrefGoogle Scholar

  • [109] H. Kräutle, E. Sauter, and G.V. Schultz, “Antenna characteristics of whisker diodes used at submillimeter receivers”, Infrared Phys. 17, 477–483 (1977). http://dx.doi.org/10.1016/0020-0891(77)90058-6CrossrefGoogle Scholar

  • [110] R. Titz, B. Auel, W. Esch, H.P. Röser, and G.W. Schwaab, “Antenna measurements of open-structure Schottky mixers and determination of optical elements for a heterodyne system at 184, 214 and 287 μm”, Infrared Phys. 30, 435–441 (1990). http://dx.doi.org/10.1016/0020-0891(90)90003-ECrossrefGoogle Scholar

  • [111] I. Mehdi, G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, F. Maiwald, and A. Maestrini, “THz multiplier circuits”, IEEE MTT-S Intern. Microwave Symp. Digest, 341–344, San Francisco, 2006. Google Scholar

  • [112] S.M. Marazita, W.L. Bishop, J.L. Hesler, K. Hui, W.E. Bowen, and T.W. Crowe, “Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding”, IEEE T. Electron. Dev. 47, 1152–1156 (2000). http://dx.doi.org/10.1109/16.842956CrossrefGoogle Scholar

  • [113] P. Siegel, R.P. Smith, M.C. Gaidis, and S. Martin, “2.5-THz GaAs monolithic membrane-diode mixer”, IEEE T. Microw. Theory 47, 596–604 (1999). http://dx.doi.org/10.1109/22.763161CrossrefGoogle Scholar

  • [114] J.A. Copeland, “Diode edge effects on doping profile measurements”, IEEE T. Electron Dev. 17, 404–407 (1970). http://dx.doi.org/10.1109/T-ED.1970.16996CrossrefGoogle Scholar

  • [115] V.I. Piddyachiy, V.M. Shulga, A.M. Korolev, and V.V. Myshenko, “High doping density Schottky diodes in the 3 mm wavelength cryogenic heterodyne receiver”, Int. J. Infrared Milli. 26, 1307–1315 (2005). http://dx.doi.org/10.1007/s10762-005-7605-6CrossrefGoogle Scholar

  • [116] J.L. Hesler and T.W. Crowe, “Responsivity and noise measurements of zero-bias Schottky diode detectors”, http://www.virginiadiodes.com/VDI/pdf/VDI%20Detector%20Char%20ISSTT2007.pdf Google Scholar

  • [117] H. Kazemi, G. Nagy, L Tran, E. Grossman, E.R. Brown, A.C. Gossard, G.D. Boreman, B. Lail, A.C. Young, and J.D. Zimmerman, “Ultra sensitive ErAs/InAlGaAs direct detectors for millimeter wave and THz imaging applications”, IEEE/MTT Int. Microwave Symposium, 1367–1370 (2007). Google Scholar

  • [118] E.R. Brown, A.C. Young, J.E. Bjarnason, J.D. Zimmerman, A.C. Gossard, and H. Kazemi, “Millimeter and sub-millimeter wave performance of an ErAs:InAlGaAs Schottky diode coupled to a single-turn square spiral”, Int. J. High Speed Electron. 17, 383–394 (2007). http://dx.doi.org/10.1142/S0129156407004576CrossrefGoogle Scholar

  • [119] http://www.darpa.mil/mto/programs/tift/pdf/MTT_THz_Workshop.pdf Google Scholar

  • [120] F. Maiwald, F. Lewen, B. Vowinkel, W. Jabs, D.G. Paveljev, M. Winnerwisser, and G. Winnerwisser, “Planar Schottky diode frequency multiplier for molecular spectroscopy up to 1.3 THz”, IEEE Microw. Guided W. 9, 198–200 (1999). http://dx.doi.org/10.1109/75.766763CrossrefGoogle Scholar

  • [121] D.H. Martin, Spectroscopic Techniques for Far-infrared, Submillimeter and Millimeter Waves, North-Holland, Amsterdam, 1967. Google Scholar

  • [122] B.V. Rollin and E.L. Simmons, “Long wavelength infrared photoconductivity of silicon at low temperatures”, Proc. Phys. Soc. B65, 995–996 (1952). CrossrefGoogle Scholar

  • [123] E. Burstein, J.J. Oberly and J.W. Davisson, “Infrared photoconductivity due to neutral impurities in silicon”, Phys. Rev. 89, 331–332 (1953). http://dx.doi.org/10.1103/PhysRev.89.331CrossrefGoogle Scholar

  • [124] P.R. Bratt, “Impurity germanium and silicon infrared detectors”, in Semiconductors and Semimetals, Vol. 12, pp. 39–142, edited by R.K. Willardson and A.C. Beer, Academic Press, New York, 1977. Google Scholar

  • [125] J. Wolf, C. Gabriel, U. Grözinger, I. Heinrichsen, G. Hirth, S. Kirches, D. Lemke, J. Schubert, B. Schulz, C. Tilgner, M. Boison, A. Frey, I. Rasmussen, R. Wagner and K. Proetel, “Calibration facility and preflight characterization of the photometer in the Infrared Space Observatory”, Opt. Eng. 33, 26–36 (1994). http://dx.doi.org/10.1117/12.155395CrossrefGoogle Scholar

  • [126] G.H. Rieke, M.W. Werner, R.I. Thompson, E.E. Becklin, W.F. Hoffmann, J.R. Houck, F.J. Low, W.A. Stein, and F.C. Witteborn, “Infrared astronomy after IRAS”, Science 231, 807–814 (1986). http://dx.doi.org/10.1126/science.231.4740.807CrossrefGoogle Scholar

  • [127] J. Leotin, “Far infrared photoconductive detectors”, Proc. SPIE 666, 81–100 (1986). http://dx.doi.org/10.1117/12.938823CrossrefGoogle Scholar

  • [128] Sclar, “Properties of doped silicon and germanium infrared detectors”, Prog. Quant. Electron. 9, 149–257 (1984). http://dx.doi.org/10.1016/0079-6727(84)90001-6CrossrefGoogle Scholar

  • [129] E.E. Haller, “Advanced far-infrared detectors”, Infrared Phys. Techn. 35, 127–146 (1994) http://dx.doi.org/10.1016/1350-4495(94)90074-4CrossrefGoogle Scholar

  • [130] N.M. Haegel and E.E. Haller, “Extrinsic germanium photoconductor material: crystal growth and characterization”, Proc. SPIE 659, 188–194 (1986). http://dx.doi.org/10.1117/12.938559CrossrefGoogle Scholar

  • [131] J.-Q. Wang, P.I. Richards, J.W. Beeman, J.W. Haegel, and E.E. Haller, “Optical efficiency of far-infrared photoconductors”, Appl. Opt. 25, 4127–4134 (1986). http://dx.doi.org/10.1364/AO.25.004127CrossrefGoogle Scholar

  • [132] A.G. Kazanskii, P.L. Richards and E.E, Haller, “Far-infrared photoconductivity of uniaxially stressed germanium”, Appl. Phys. Lett. 31, 496–497 (1977). http://dx.doi.org/10.1063/1.89755CrossrefGoogle Scholar

  • [133] E.E. Haller, M.R. Hueschen, and P.L. Richards, “Ge:Ga photoconductors in low infrared backgrounds”, Appl. Phys. Lett. 34, 495–497 (1979). http://dx.doi.org/10.1063/1.90861CrossrefGoogle Scholar

  • [134] J. Wolf, C. Gabriel, U. Grözinger, I. Heinrichsen, G. Hirth, S. Kirches, D. Lemke, J. Schubert, B. Schulz, C. Tilgner, M. Boison, A. Frey, I. Rasmussen, R. Wagner and K. Proetel, “Calibration facility and preflight characterization of the photometer in the Infrared Space Observatory”, Opt. Eng. 33, 26–36 (1994). http://dx.doi.org/10.1117/12.155395CrossrefGoogle Scholar

  • [135] E. Young, J. Stansberry, K. Gordon, and J. Cadien, “Properties of germanium photoconductor detectors”, in Proc. Conf. ESA SP-481, pp. 231–235, edited by L. Metcalfe, A. Salama, S.B. Peschke, and M.F. Kessler, VilSpa, 2001. Google Scholar

  • [136] N. Hiromoto, M. Fujiwara, H. Shibai and H. Okuda, “Ge:Ga far-infrared photoconductors for space applications”, Jpn. J. Appl. Phys. 35, 1676–1680 (1996). http://dx.doi.org/10.1143/JJAP.35.1676CrossrefGoogle Scholar

  • [137] Y. Doi, S. Hirooka, A. Sato, M. Kawada, H. Shibai, Y. Okamura, S. Makiuti, T. Nakagawa, N. Hiromoto, and M. Fujiwara, “Large-format and compact stressed Ge:Ga array for the Astro-F (IRIS) mission”, Adv. Space Res. 30, 2099–2104 (2002). http://dx.doi.org/10.1016/S0273-1177(02)00594-XCrossrefGoogle Scholar

  • [138] E.T. Young, J.T. Davis, C.L. Thompson, G.H. Rieke, G. Rivlis, R. Schnurr, J. Cadien, L. Davidson, G.S. Winters, and K.A. Kormos, “Far-infrared imaging array for SIRTF”, Proc. SPIE 3354, 57–65 (1998). http://dx.doi.org/10.1117/12.317315CrossrefGoogle Scholar

  • [139] A. Poglitsch, C. Waelkens, O.H. Bauer, J. Cepa, H. Feuchtgruber, T. Henning, C. van Hoof, F. Kerschbaum, O. Krause, E. Renotte, L. Rodriguez, P. Saracenoi, and B. Vandenbussche, “The photodetector array camera and spectrometer (PACS) for the Herschel Space Laboratory”, Proc. SPIE 7010, 701005 (2008). http://dx.doi.org/10.1117/12.790016CrossrefGoogle Scholar

  • [140] http://fifi-ls.mpg-garching.mpg.dr/detector.html Google Scholar

  • [141] http://pacs.mpe.mpg.de/p15n.html Google Scholar

  • [142] N. Billot, P. Agnese, J.L. Augueres, A. Beguin, and A. Bouere, O. Boulade, C. Cara, C. Cloue, E. Doumayrou, L. Duband, B. Horeau, I. Le Mer, J.L. Pennec, J. Martignac, K. Okumura, V. Reveret, M. Sauvage, F. Simoens, and L. Vigroux, “The Herschel/PACS 2560 bolometers imaging camera”, Proc. SPIE 6265, 62650D (2006). http://dx.doi.org/10.1117/12.671154Google Scholar

  • [143] M. Shirahata, S. Matsuura, T. Nakagawa, T. Wada, S. Kamiya, M. Kawada, Y. Sawayama, Y. Doi, H. Kawada, Y. Creten, B. Okcan, W. Raab, and A. Poglitsh, “Development of a far-infrared Ge:Ga monolithic array detector for SPICA a possible application to SPICA”, Proc. SPIE 7741, 77410B (2010). http://dx.doi.org/10.1117/12.857772Google Scholar

  • [144] J. Farhoomand, D.L. Sisson, and J.W. Beeman, “Viability of layered-hybrid architecture for far IR focal-plane arrays”, Infrared Phys.Techn. 51, 152–159 (2008). http://dx.doi.org/10.1016/j.infrared.2007.07.004CrossrefGoogle Scholar

  • [145] M. Ressler, H. Hogue, M. Muzilla, J. Blacksberg, J. Beeman, E. Haller, J. Huffman, J. Farhoomand, and E. Young “Development of large format far-infrared detectors”, Astro2010: The Astronomy and Astrophysics Decadal Survey, Technology Development Papers, no. 18. Google Scholar

  • [146] H.H. Houge, M.G. Mlynczak, M.N. Abedin, S.A. Masterjohn, and J.E. Huffman, “Far-infrared detector development for space-based Earth observation”, Proc. SPIE 7082, 70820E-1–8 (2008). Google Scholar

  • [147] J. Bandaru, J.W. Beeman, and E.E. Haller, “Growth and performance of Ge:Sb blocked impurity band (BIB) detectors”, Proc. SPIE 4486, 193–199 (2002). http://dx.doi.org/10.1117/12.455106CrossrefGoogle Scholar

  • [148] L.A. Reichertz, J.W. Beeman, B.L. Cardozo, G. Jakob, R. Katterloher, N.M. Haegel, and E.E. Haller, “Development of a GaAs-based BIB detector for sub-mm wavelengths”, Proc. SPIE 6275, 62751S (2006). http://dx.doi.org/10.1117/12.673039Google Scholar

  • [149] D.R. Khokhlov, I.I. Ivanchik, S.N. Raines, D.M. Watson, and J.L. Pipher, “Performance and spectral response of Pb1−xSnxTe(In) far-infrared photodetectors”, Appl. Phys. Lett. 76, 2835–2837 (2000). http://dx.doi.org/10.1063/1.126489CrossrefGoogle Scholar

  • [150] K.G. Kristovskii, A.E. Kozhanov, D.E. Dolzhenko, I.I. Ivanchik, D. Watson, and D.R. Khokhlov, “Photoconductivity of lead telluride-based doped alloys in the submillimeter wavelength range”, Phys. Solid State 46, 122–124 (2004). http://dx.doi.org/10.1134/1.1641937CrossrefGoogle Scholar

  • [151] A.N. Akimov, V.G. Erkov, V.V. Kubarev, E.L. Molodtsova, A.E. Klimov, and V.N. Shumskyi, “Photosensitivity of Pb1−x SnxTe:In films in the terahertz region of the spectrum”, Semiconductors 40, 164–168 (2006). http://dx.doi.org/10.1134/S1063782606020096CrossrefGoogle Scholar

  • [152] A. Artamkin, A. Nikorici, L. Ryabova, V. Shklover, and D. Khokhlov, “Continuous focal plane array for detection of terahertz radiation”, Proc. SPIE 6297, 62970B (2006). http://dx.doi.org/10.1117/12.680763Google Scholar

  • [153] A.N. Akimov, A.E. Klimov, I.G. Neizvestny, V.N. Shumsky, V.V. Kubarev, O.V. Smolin, and E.V. Susov, “Sensitivity of Pb1–xSnxTe films in submillimeter spectral range”, Prikladnaya Fizika 6, 12–17 (2007). (in Russian). Google Scholar

  • [154] A. Klimov, V. Shumsky, and V. Kubarev, “Terahertz sensitivity of Pb1—xSnxTe:In”, Ferroelectrics 347, 111–119 (2007). http://dx.doi.org/10.1080/00150190601187252CrossrefGoogle Scholar

  • [155] A.G. Milnes, Deep Impurities in Semiconductors, Wiley Interscience, New York, 1973. Google Scholar

  • [156] B.A. Volkov, L.I. Ryabova, and D.R. Khokhlov, “Mixed-valence impurities in lead telluride-based solid solutions”, Phys.-Usp. 45, 819–846 (2002). http://dx.doi.org/10.1070/PU2002v045n08ABEH001146CrossrefGoogle Scholar

  • [157] Yu.G. Troyan, F.F. Sizov, and V.M. Lakeenkov, “Relaxation time and current instabilities in highly resistive PbTe:Ga single crystals”, Ukr. J. Phys. 32, 467–471 (1987). Google Scholar

  • [158] C. Wilson, L. Frunzio, and D. Prober, “Time-resolved measurements of thermodynamic fluctuations of the particle number in a nondegenerate Fermi gas”, Phys. Rev. Lett. 87, 067004 (2001). CrossrefGoogle Scholar

  • [159] C.A. Mears, Q. Hu, P.L. Richards, A.H. Worsham, D.E. Prober, and A.V. Raisanen, “Quantum limited heterodyne detection of millimeter waves using super conducting tantalum tunnel junctions”, Appl. Phys. Lett. 57, 2487–2489 (1990). http://dx.doi.org/10.1063/1.104111CrossrefGoogle Scholar

  • [160] E. Burstein, D.N. Langenberg, and B.N. Taylor, “Superconductors as quantum detectors for microwave and sub-millimeter radiation”, Phys. Rev. Lett. 6, 92–94 (1961). http://dx.doi.org/10.1103/PhysRevLett.6.92CrossrefGoogle Scholar

  • [161] A.H. Dayem and R.J. Martin, “Quantum interaction of microwave radiation with tunnelling between superconductors”, Phys. Rev. Lett. 8, 246–248 (1962). http://dx.doi.org/10.1103/PhysRevLett.8.246CrossrefGoogle Scholar

  • [162] P.K. Tien and J.P. Gordon, “Multiphoton process observed in the interaction of microwave fields with the tunnelling between superconductor films”, Phys. Rev. 129, 647–651 (1963). http://dx.doi.org/10.1103/PhysRev.129.647CrossrefGoogle Scholar

  • [163] P.L. Richards, T.M. Shen, R.E. Harris, and F.L. Lloyd, “Quasiparticle heterodyne mixing in SIS tunnel junctions”, Appl. Phys. Lett. 34, 345–347 (1979). http://dx.doi.org/10.1063/1.90782CrossrefGoogle Scholar

  • [164] G.J. Dolan, T.G. Phillips, and D.P. Woody, “Low-noise 115; GHz mixing in superconducting oxide-barrier tunnel junctions”, Appl. Phys. Lett. 34, 347–349 (1979). http://dx.doi.org/10.1063/1.90783CrossrefGoogle Scholar

  • [165] J.R. Tucker and M.J. Feldman, “Quantum detection at millimeter wavelength”, Rev. Mod. Phys. 57, 1055–1113 (1985). http://dx.doi.org/10.1103/RevModPhys.57.1055CrossrefGoogle Scholar

  • [166] C.A. Mears, Q. Hu, P.L. Richards, A.H. Worsham, D.E. Prober, and A.V. Raisanen, “Quantum limited heterodyne detection of millimeter waves using super conducting tantalum tunnel junctions”, Appl. Phys. Lett. 57, 2487–2489 (1990). http://dx.doi.org/10.1063/1.104111CrossrefGoogle Scholar

  • [167] V.P. Koshelets, S.V. Shitov, L.V. Filippenko, P.N. Dmitriev, A.N. Ermakov, A.S. Sobolev, and M.Yu. Torgashin, “Integrated superconducting sub-mm wave receivers”, Radiophys. Quant. Electr. 46, 618–630 (2003). http://dx.doi.org/10.1023/B:RAQE.0000024992.02488.93CrossrefGoogle Scholar

  • [168] A. Karpov, D. Miller, F. Rice, J.A. Stern, B. Bumble, H.G. LeDuc, and J. Zmuidzinas, “Low noise SIS mixer for far infrared radio astronomy”, Proc. SPIE 5498, 616–621 (2004). http://dx.doi.org/10.1117/12.553190CrossrefGoogle Scholar

  • [169] G. Chattopadhyay, “Future of heterodyne receivers at submillimeter wavelengths”, Digest IRMMW-THz-2005 Conf., 461–462 (2005). Google Scholar

  • [170] G.N. Gol’tsman, “Hot electron bolometric mixers: new terahertz technology”, Infrared Phys. Techn. 40, 199–206 (1999). http://dx.doi.org/10.1016/S1350-4495(99)00011-0CrossrefGoogle Scholar

  • [171] R. Blundell and K.H. Gundlach, “A quasioptical SIN mixer for 230 GHz frequency range”, Int. J. Infrared Milli. 8, 1573–1579 (1987). http://dx.doi.org/10.1007/BF01012443CrossrefGoogle Scholar

  • [172] M. Nahum, P.L. Richards, and C.A. Mears, “Design analysis of a novel hot-electron microbolometer”, IEEE T. Appl. Supercon. 3, 2124–2127 (1993). http://dx.doi.org/10.1109/77.233921CrossrefGoogle Scholar

  • [173] M. Nahum and J. Martinis, “Ultrasensitive hot-electron microbolometer”, Appl. Phys. Lett. 63, 3075–3077 (1993). http://dx.doi.org/10.1063/1.110237CrossrefGoogle Scholar

  • [174] D. Chouvaev, D. Sandgren, M. Tarasov, and L. Kuzmin, “Optical qualification of the normal metal hot-electron microbolometer (NHEB),” 12 thInt. Symp. Space THz Technol., San Diego, 446–456 (2001). Google Scholar

  • [175] D. Sandgren, D. Chouvaev, M. Tarasov, and L. Kuzmin, “Fabrication and optical characterization of the normal metal hot-electron microbolometer with Andreev mirrors”, Physica C372, 444–447 (2002). Google Scholar

  • [176] D. Golubev and L. Kuzmin, “Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction”, J. Appl. Phys. 89, 6464–6472 (2001). http://dx.doi.org/10.1063/1.1351002CrossrefGoogle Scholar

  • [177] D.R. Schmidt, K.W. Lehnert, A.M. Clark, W.D. Duncan, K.D. Irwin, N. Miller, and J.N. Ullom, “A superconductor-insulator-normal metal bolometer with microwave readout suitable for large-format arrays”, Appl. Phys. Lett. 86, 053505 (2005). CrossrefGoogle Scholar

  • [178] P. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays”, Nature 425, 817–821 (2003). http://dx.doi.org/10.1038/nature02037CrossrefGoogle Scholar

  • [179] P.R. Maloney, N.G. Czakon, P.K. Day, R. Duan, J. Gao, J. Glenn, S. Golwala, M. Hollister, H.G. LeDuc, B. Mazin, O. Noroozian, H.T. Nguyen, J. Sayers, J. Schlaerth, J.E. Vaillancourt, A. Vayonakis, P. Wilson, and J. Zmuidzinas, “The MKID camera”, AIP Conf. Proc. 1185, 176–179 (2009). http://dx.doi.org/10.1063/1.3292309CrossrefGoogle Scholar

  • [180] SELEX GALILEO; http://www.selex-sas.com/EN/Common/files/SELEX_Galileo/Products/DLATGS_dsh.pdf. Google Scholar

  • [181] D. Dooley, “Sensitivity of broadband pyroelectric terahertz detectors continues to improve”, Laser Focus World. May 2010. Google Scholar

  • [182] http://www.spectrumdetector.com/pdf/datasheets/THZ.pdf Google Scholar

  • [183] A.L. Woodcraft, R.V. Sudiwal, E. Wakui, and C. Paine, “Hopping conduction in NTD germanium: comparison between measurement and theory”, J. Low Temp. Phys. 134, 925–944 (2004). http://dx.doi.org/10.1023/B:JOLT.0000013209.08494.01CrossrefGoogle Scholar

  • [184] Herschel Space Observatory, http://herschel.jpl.nasa.gov/spireInstrument.shtml Google Scholar

  • [185] P. Agnese, C. Buzzi, P. Rey, L. Rodriguez, and J.L. Tissot, “New technological development for far-infrared bolometer arrays”, Proc. SPIE 3698, 284–290 (1999). http://dx.doi.org/10.1117/12.354530CrossrefGoogle Scholar

  • [186] C. Dowell, C.A. Allen, S. Babu, M.M. Freund, M.B. Gardnera, J. Groseth, M. Jhabvala, A. Kovacs, D.C. Lis, S.H. Moseley, T.G. Phillips, R. Silverberg, G. Voellmer, and H. Yoshida, “SHARC II: a Caltech Submillimeter Observatory facility camera with 384 pixels”, Proc. SPIE 4855, 73–87 (2003). http://dx.doi.org/10.1117/12.459360CrossrefGoogle Scholar

  • [187] http://herschel.esac.esa.int/science_instruments.shtml Google Scholar

  • [188] G.H. Rieke, “Infrared detector arrays for astronomy”, Annu. Rev. Astrophys. 45, 77–115 (2007). http://dx.doi.org/10.1146/annurev.astro.44.051905.092436CrossrefGoogle Scholar

  • [189] E.M. Conwell, “High field transport in semiconductors”, Solid State Physics, Suppl. 9, Academic Press, New York, 1967. Google Scholar

  • [190] T.G. Phillips and K.B. Jefferts, “A low temperature bolometer heterodyne receiver for millimeter wave astronomy”, Rev. Sci. Instrum. 44, 1009–1014 (1973). http://dx.doi.org/10.1063/1.1686288CrossrefGoogle Scholar

  • [191] E.H. Putley, “InSb submilimeter photoconductive detectors”, in Semiconductors and Semimetals, Vol. 12, pp. 143–167, edited by R.K. Willardson and A.C. Beer, Academic Press, New York, 1977. Google Scholar

  • [192] http://www.infraredlaboratories.com/InSb_Hot_e_Bolometers.html Google Scholar

  • [193] P.R. Norton, “Photodetectors”, in Handbook of Optics, Vol. I, chapter 24, edited by M. Bass, McGraw Hill, New York, 2010. Google Scholar

  • [194] K.S. Yngvesson, J.-X. Yang, F. Agahi, D. Dai, C. Musante, W. Grammer, and K.M. Lau, “AlGaAs/GaAs quasi-bulk effect mixers: Analysis and experiments”, Third Int. Symp. Space THz Techn. 688–705 (1992). Google Scholar

  • [195] Yu.B. Vasilyev, A.A. Usikova, N.D. Il’inskaya, P.V. Petrov, and Yu.L. Ivanov, “Highly sensitive submillimeter InSb photodetectors”, Semiconductors 42, 1234–1236 (2008). http://dx.doi.org/10.1134/S1063782608100163CrossrefGoogle Scholar

  • [196] H. Moseley and D. McCammon, “High performance silicon hot electron bolometers”, Ninth Int. Workshop on Low Temperature Detectors, AIP Proc. 605, 103–106 (2002). Google Scholar

  • [197] K. Seeger, Semiconductor Physics, Springer, Berlin, 1991. Google Scholar

  • [198] S.M. Smith, M.J. Cronin, R.J. Nicholas, M.A. Brummell, J.J. Harris, and C.T. Foxon, “Millimeter and submillimeter detection using Ga1−xAlxAs/GaAs heterosructures”, Int. J. Infrared Milli. 8, 793–802 (1987). http://dx.doi.org/10.1007/BF01010721CrossrefGoogle Scholar

  • [199] J.-X. Yang, F. Agahi, D. Dai, C.F. Musante, W. Grammer, K.M. Lau, and K.S. Yngvesson, “Wide-bandwidth electron bolometric mixers: a 2DEG prototype and potential for low-noise THz receivers”, IEEE T. Microw. Theory 41, 581–589 (1993). http://dx.doi.org/10.1109/22.231649CrossrefGoogle Scholar

  • [200] G.N. Gol’tsman and K.V. Smirnov, “Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures”, JETP Lett. 74, 474–479 (2001). http://dx.doi.org/10.1134/1.1434290CrossrefGoogle Scholar

  • [201] A.A. Verevkin, N.G. Ptitsina, K.V. Smirnov, G.N. Gol’tsman, E.M. Gershenzon, and K.S. Ingvesson, “Direct measurements of energy relaxation times on an AlGaAs/GaAs heterointerface in the range 4.2–50 K”, JETP Lett. 64, 404–409 (1996). http://dx.doi.org/10.1134/1.567211CrossrefGoogle Scholar

  • [202] T. Phillips and D. Woody, “Millimeter-wave and submillimeter-wave receivers”, Annu. Rev. Astron. Astr. 20, 285–321 (1982). http://dx.doi.org/10.1146/annurev.aa.20.090182.001441CrossrefGoogle Scholar

  • [203] E.M. Gershenzon, G.N. Gol’tsman, I.G. Gogdize, Y.P. Gusev, A.J. Elant’ev, B.S. Karasik, and A.D. Semenov, “Millimeter and submillimeter range mixer based on electronic heating of superconducting films in the resistive state”, Superconductivity 3, 1582–1597 (1990). Google Scholar

  • [204] B. Karasik, G.N. Gol’tsman, B.M. Voronov, S.I. Svechnikov, E.M. Gershenzon, H. Ekström, S. Jacobsson, E. Kollberg, and K.S. Yngvesson, “Hot electron quasioptical NbN superconducting mixer”, IEEE T. Appl. Supercon. 5, 2232–2235 (1995). http://dx.doi.org/10.1109/77.403029CrossrefGoogle Scholar

  • [205] D.E. Prober, “Superconducting terahertz mixer using a transition-edge microbolometer”, Appl. Phys. Lett. 62, 2119–2121 (1993). http://dx.doi.org/10.1063/1.109445CrossrefGoogle Scholar

  • [206] A. Skalare, W.R. McGrath, B. Bumble, H.G. LeDuc, P.J. Burke, A.A. Vereijen, R.J. Schoelkopf, and D.E. Prober, “Large bandwidth and low noise in a diffusion-cooled hot-electron bolometer mixer”, Appl. Phys. Lett. 68, 1558–1560 (1996). http://dx.doi.org/10.1063/1.115698CrossrefGoogle Scholar

  • [207] W.R. McGrath, “Novel hot-electron bolometer mixers for submillimeter applications: An overview of recent developments”, Proc. URSI Int. Symp. on Signals, Systems, and Electronics, 147–152 (1995). http://dx.doi.org/10.1109/ISSSE.1995.497955CrossrefGoogle Scholar

  • [208] P.J. Burke, R.J. Schoelkopf, D.E. Prober, A. Skalare, W.R. McGrath, B. Bumble, and H.G. LeDuc, “Length scaling of bandwidth and noise in hot-electron superconducting mixers”, Appl. Phys. Lett. 68, 3344–3346 (1996). http://dx.doi.org/10.1063/1.116052CrossrefGoogle Scholar

  • [209] A.D. Semenov, G.N. Gol’tsman, and R. Sobolewski, “Hot-electron effect in semiconductors and its applications for radiation sensors”, Semicond. Sci. Tech. 15, R1–R16 (2002). Google Scholar

  • [210] E.M. Gershenson, M.E. Gershenson, G.N. Goltsman, B.S. Karasik, A.M. Lyul’kin, and A.D. Semenov, “Ultra-fast superconducting electron bolometer”, J. Tech. Phys. Lett. 15, 118–119 (1989). Google Scholar

  • [211] K.S. Il’in, M. Lindgren, M. Currie, A.D. Semenov, G.N. Gol’tsman, R. Sobolewski, S.I. Cherednichenko, and E.M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors”, Appl. Phys. Lett. 76, 2752–2754 (2000). http://dx.doi.org/10.1063/1.126480CrossrefGoogle Scholar

  • [212] Y. Gousev, G. Gol’tsman, A. Semenov, E. Gershenzon, R. Nebosis, M. Heusinger, and K. Renk, “Broad-band ultrafast superconducting NbN detector for electromagnetic-radiation”, J. Appl. Phys. 75, 3695–3697 (1994). http://dx.doi.org/10.1063/1.356060CrossrefGoogle Scholar

  • [213] J. J. A. Baselmans, A. Baryshev, S. F. Reker, M. Hajenius, J. Gao, T. Klapwijk, B. Voronov, and G. Gol’tsman, “Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers”, J. Appl. Phys. 100, 184103 (2006). http://dx.doi.org/10.1063/1.2234802CrossrefGoogle Scholar

  • [214] W.J. Skocpol, M.R. Beasly, and M. Tinkham, “Self-heating hotspots in superconducting thin-film microbridges”, J. Appl. Phys. 45, 4054–4066 (1974). http://dx.doi.org/10.1063/1.1663912CrossrefGoogle Scholar

  • [215] A.D. Semenov and H.-W. Hübers, “Frequency bandwidth of a hot-electron mixer according to the hot-spot model”, IEEE T. Appl. Supercon. 11, 196–199 (2001). http://dx.doi.org/10.1109/77.919318CrossrefGoogle Scholar

  • [216] http://www.sron.nl/index.php?option=com_content&task=view&id=44&Itemid=111 Google Scholar

  • [217] S.E. Schwarz and B.T. Ulrich, “Antenna-coupled infrared detectors”, J. Appl. Phys. 85, 1870–1873 (1977). http://dx.doi.org/10.1063/1.323940CrossrefGoogle Scholar

  • [218] A. Balanis, Antenna Theory: Analysis and Design, 3rd edition, Wiley & Sons, New York 2005. Google Scholar

  • [219] J. Volakis, Antenna Engineering Handbook, 4th edition, McGraw-Hill, New York, 2007. Google Scholar

  • [220] A.J. Kreisler and A. Gaugue, “Recent progress in HTSC bolometric detectors at terahertz frequencies”, Proc. SPIE 3481, 457–468 (1998). http://dx.doi.org/10.1117/12.335899CrossrefGoogle Scholar

  • [221] G.N. Gol’tsman, Yu.B. Vachtomin, S.V. Antipov, M.I. Finkel, S.N. Maslennikiv, K.V. Smirnov, S.L. Poluakov, S.I. Svechnikov, N.S. Kaurova, E.V. Grishina, and B.M. Voronov, “NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers”, Proc. SPIE 5727, 95–106 (2005). http://dx.doi.org/10.1117/12.590490CrossrefGoogle Scholar

  • [222] D. Rutledge and M. Muha, “Imaging antenna arrays”, IEEE T. Antennas Propagat. AP-30, 535–540 (1982). http://dx.doi.org/10.1109/TAP.1982.1142856CrossrefGoogle Scholar

  • [223] A.J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range”, Supercond. Sci. Tech. 13, 1235–1245 (2000). http://dx.doi.org/10.1088/0953-2048/13/8/321CrossrefGoogle Scholar

  • [224] O. Harnack, B. Karasik, W. McGrath, A. Kleinsasser, and J. Barner, “Submicron-long HTS hot-electron mixers”, Supercond. Sci. Tech. 12, 850–852 (1999). http://dx.doi.org/10.1088/0953-2048/12/11/347CrossrefGoogle Scholar

  • [225] B. Karasik, W. McGrath, and M. Gaidis, “Analysis of a high-Tc hot-electron mixer for terahertz applications”, J. Appl. Phys. 81, 1581–1589 (1997). http://dx.doi.org/10.1063/1.365544CrossrefGoogle Scholar

  • [226] F. Ronnung, S. Cherednichenko, G. Gol’tsman, E. Gershen- zon, and D. Winkler, “A nanoscale YBCO mixer optically coupled with a bow tie antenna”, Supercond. Sci. Tech. 12, 853–855 (1999). http://dx.doi.org/10.1088/0953-2048/12/11/348CrossrefGoogle Scholar

  • [227] M. Lindgren, M. Currie, C. Williams, T.Y. Hsiang, P.M. Fauchet, R. Sobolewsky, S.H. Moffat, R.A. Hughes, J.S. Preston, and F.A. Hegmann, “Intrinsic picosecond response times of Y-Ba-Cu-O superconducting photoresponse”, Appl. Phys. Lett. 74, 853–855 (1999). http://dx.doi.org/10.1063/1.123388CrossrefGoogle Scholar

  • [228] V.V. Shirotov and Yu.Ya. Divin, “Frequency-selective Josephson detector: Power dynamic range at subterahertz frequencies”, Techn. Phys. Lett. 30, 522–524 (2004). http://dx.doi.org/10.1134/1.1773356CrossrefGoogle Scholar

  • [229] M.V. Lyatti, D.A. Tkachev, and Yu.Ya. Divin, “Signal and noise characteristics of a terahertz frequency-selective YBa2Cu3O7− Josephson detector”, Techn. Phys. Lett. 32, 860–862 (2006). http://dx.doi.org/10.1134/S1063785006100130CrossrefGoogle Scholar

  • [230] D.J. Benford and S.H. Moseley, “Superconducting transition edge sensor bolometer arrays for submillimeter astronomy”, Proc. Int. Symp. on Space and THz Technology, www.eecs.umich.edu/~jeast/benford_2000_4_1.pdf Google Scholar

  • [231] D. Olaya, J. Wei, S. Pereverzev, B.S. Karasik, J.H. Kawamura, W.R. McGrath, A.V. Sergeev, and M.E. Gershenson, “An untrasensitive hot-electron bolometer for low-background SMM applications”, Proc. SPIE 6275, 627506 (2006). http://dx.doi.org/10.1117/12.672303CrossrefGoogle Scholar

  • [232] K. Irwin, “An application of electrothermal feedback for high-resolution cryogenic particle-detection”, Appl. Phys. Lett. 66, 1998–2000 (1995). http://dx.doi.org/10.1063/1.113674CrossrefGoogle Scholar

  • [233] K. Irwin, G. Hilton, D. Wollman, and J. Martinis, “X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback”, Appl. Phys. Lett. 69, 1945–1947 (1996). http://dx.doi.org/10.1063/1.117630CrossrefGoogle Scholar

  • [234] A.T. Lee. P.L. Richards, S.W. Nam, B. Cabrera, and K.D. Irwin, “A superconducting bolometer with strong electrothermal feedback”, Appl. Phys. Lett. 69, 1801–1803 (1996). http://dx.doi.org/10.1063/1.117491CrossrefGoogle Scholar

  • [235] G.C. Hilton, J.M. Martinis, K.D. Irwin, N.F. Bergren, D.A. Wollman, M.E. Huber, S. Deiker, and S.W. Nam, “Microfabricated transition-edge X-ray detectors”, IEEE T. Appl. Supercon. 11, 739–742 (2001). http://dx.doi.org/10.1109/77.919451CrossrefGoogle Scholar

  • [236] B. Cabrera, R. Clarke, P. Colling, A. Miller, S. Nam, and R. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors”, Appl. Phys. Lett. 73, 735–737 (1998). http://dx.doi.org/10.1063/1.121984CrossrefGoogle Scholar

  • [237] W. Duncan, W.S. Holland, M.D. Audley, M. Cliffe, T. Hodson, B.D. Kelly, X. Gao, D.C. Gostick, M. MacIntosh, H. McGregor, T. Peacocke, K.D. Irwin, G.C. Hilton, S.W. Deiker, J. Beier, C.D. Reintsema, A.J. Walton, W. Parkes, T. Stevenson, A.M. Gundlach, C. Dunare, and P.A.R. Ade, “SCUBA-2: Developing the detectors”, Proc. SPIE 4855, 19–29 (2003). http://dx.doi.org/10.1117/12.459107Google Scholar

  • [238] A.J. Walton, W. Parkes, J.G. Terry, C. Dunare, J.T.M. Stevenson, A.M. Gundlach, G.C. Hilton, K.D. Irwin, J.N. Ullom, W.S. Holland, W. Duncan, M.D. Audley, P.A.R. Ade, R.V. Sudiwala, and E. Schulte, “Design and fabrication of the detector technology for SCUBA-2”, IEE Proc.-A 151, 119–120 (2004). Google Scholar

  • [239] A.-D. Brown, D. Chuss, V. Mikula, R. Henry, E. Wollack, Y. Zhao, G.C. Hilton, and J.A. Chervenak, “Auxiliary components for kilopixel transition edge sensor arrays”, Solid State Electron. 52, 1619–1624 (2008). http://dx.doi.org/10.1016/j.sse.2008.06.018CrossrefGoogle Scholar

  • [240] S. Lee, J. Gildemeister, W. Holmes, A. Lee, and P. Richards, “Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK”, Appl. Opt. 37, 3391–3397 (1998). http://dx.doi.org/10.1364/AO.37.003391CrossrefGoogle Scholar

  • [241] H.F.C. Hoevers, A.C. Bento, M.P. Bruijn, L. Gottardi, M.A.N. Korevaar, W.A. Mels, and P.A.J. de Korte, “Thermal fluctuation noise in a voltage biased superconducting transition edge thermometer”, Appl. Phys. Lett. 77, 4422–4424 (2000). http://dx.doi.org/10.1063/1.1336550CrossrefGoogle Scholar

  • [242] M.D. Audley, D.M. Glowacka, D.J. Goldie, A.N. Lasenby, V.N. Tsaneva, S. Withington, P.K. Grimes, C.E. North, G. Yassin, L. Piccirillo, G. Pisano, P.A.R. Ade, G. Teleberg, K.D. Irwin, W.D. Duncan, C.D. Reintsema, M. Halpern, and E.S. Battistellik, “Tests of finline-coupled TES bolometers for COVER”, Digest IRMMW-THz-2007 Conf., 180–181, Cardiff, 2007. Google Scholar

  • [243] J.A. Chervenak, K.D. Irwin, E.N. Grossman, J.M. Martinis, C.D. Reintsema, and M.E. Huber, “Superconducting multiplexer for arrays of transition edge sensors”, Appl. Phys. Lett. 74, 4043–4045 (1999). http://dx.doi.org/10.1063/1.123255CrossrefGoogle Scholar

  • [244] P.J. Yoon, J. Clarke, J.M. Gildemeister, A.T. Lee, M.J. Myers, P.L. Richards, and J.T. Skidmore, “Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors”, Appl. Phys. Lett. 78, 371–373 (2001). http://dx.doi.org/10.1063/1.1338963CrossrefGoogle Scholar

  • [245] The SQUID Handbook, Vol. II: Applications, edited by J. Clarke and A.I. Braginski, Wiley-VCH, Weinheim, 2006. Google Scholar

  • [246] K.D. Irvin, “SQUID multiplexers for transition-edge sensors”, Physica C 368, 203–210 (2002). http://dx.doi.org/10.1016/S0921-4534(01)01167-4CrossrefGoogle Scholar

  • [247] K.D. Irwin, M.D. Audley, J.A. Beall, J. Beyer, S. Deiker, W. Doriese, W.D. Duncan, G.C. Hilton, W.S. Holland, C.D. Reintsema, J.N. Ullom, L.R. Vale, and Y. Xu, “In-focal-plane SQUID multiplexer”, Nuclear Inst. Methods Phys. Research A520, 544–547 (2004). http://dx.doi.org/10.1016/j.nima.2003.11.310CrossrefGoogle Scholar

  • [248] K.D. Irvin and G.C. Hilton, “Transition-edge sensors”, in Cryogenic Particle Detection, pp. 63–149, edited by C. Enss, Springer-Verlag, Berlin, 2005. Google Scholar

  • [249] T.M. Lanting, H.M. Cho, J. Clarke, W.L. Holzapfel, A.T. Lee, M. Lueker, P.L. Richards, M.A. Dobbs, H. Spieler, and A. Smith, “Frequency-domain multiplexed readout of transition-edge sensor arrays with a superconducting quantum interference device”, Appl. Phys. Lett. 86, 112511 (2005). http://dx.doi.org/10.1063/1.1884746CrossrefGoogle Scholar

  • [250] W.S. Holland, W. Duncan, B.D. Kelly, K.D. Irwin, A.J. Walton, P.A.R. Ade, and E. I. Robson, “SCUBA-2: A new generation submillimeter imager for the James Clerk Maxwell Telescope”, Proc. SPIE 4855, 1–18 (2003). http://dx.doi.org/10.1117/12.459152CrossrefGoogle Scholar

  • [251] A.L. Woodcraft, M.I. Hollister, D. Bintley, M.A. Ellis, X. Gao, W.S. Holland, M.J. MacIntosh, P.A.R. Ade, J.S. House, C.L. Hunt, and R.V. Sudiwala, “Characterization of a prototype SCUBA-2 1280-pixel submillimetre superconducting bolometer array”, Proc. SPIE 6275, 62751F (2006). http://dx.doi.org/10.1117/12.671310Google Scholar

  • [252] “SCUBA-2,” http://www.roe.ac.uk/ukatc/projects/scubatwo/ Google Scholar

  • [253] D.J. Benford, J.G. Steguhn, T.J. Ames, C.A. Allen, J.A. Chervenak, C.R. Kennedy, S. Lefranc, S.F. Maher, S.H. Moseley, F. Pajot, C. Rioux, R.A. Shafer, and G.M. Voellmer, “First astronomical images with a multiplexed superconducting bolometer array”, Proc. SPIE 6275, 62751C (2006). http://dx.doi.org/10.1117/12.672365Google Scholar

  • [254] J. Gildemeister, A. Lee, and P. Richards, “Monolithic arrays of absorber-coupled voltagebiased superconducting bolometers”, Appl. Phys. Lett. 77, 4040–4042 (2000). http://dx.doi.org/10.1063/1.1326844CrossrefGoogle Scholar

  • [255] D.J. Benford, G.M. Voellmer, J.A. Chervenak, K.D. Irwin, S.H. Moseley, R.A. Shafer, G.J. Stacey, and J.G. Staguhn, “Thousand-element multiplexed superconducting bolometer arrays”, in Proc. Far-IR, Sub-MM, and MM Detector Workshop, Vol. NASA/CP-2003-211 408, pp. 272–275, edited by J. Wolf, J. Farhoomand, and C.R. McCreight, 2003. Google Scholar

  • [256] J. Gildemeister, A. Lee, and P. Richards, “A fully lithographed voltage-biased superconducting spiderweb bolometer”, Appl. Phys. Lett. 74, 868–870 (1999). http://dx.doi.org/10.1063/1.123393CrossrefGoogle Scholar

  • [257] W. Knap, V. Kachorowskii, Y. Deng, S. Rumyantsev, J.-Q. Lu, R. Gaska, M.S. Shur, G. Simin, X. Hu, and M.A. Khan, C.A. Saylor, and L.C. Brunal, “Nonresonant detection of terahertz radiation in field effect transistors”, J. Appl. Phys. 91, 9346–9353 (2002). http://dx.doi.org/10.1063/1.1468257CrossrefGoogle Scholar

  • [258] A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, “Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors”, Appl. Phys. Lett. 89, 131926 (2006). http://dx.doi.org/10.1063/1.2358816CrossrefGoogle Scholar

  • [259] Y.M. Meziani, J. Lusakowski, N. Dyakonova, W. Knap, D. Seliuta, E. Sirmulis, J. Deverson, G. Valusis, F. Boeuf, and T. Skotnicki, “Non resonant response to terahertz radiation by submicron CMOS transistors”, IEICE T. Electr. E89-C, 993–998 (2006). http://dx.doi.org/10.1093/ietele/e89-c.7.993CrossrefGoogle Scholar

  • [260] G.C. Dyer, J.D. Crossno, G.R. Aizin, J. Mikalopas, E.A. Shaner, M.C. Wanke, J.L. Reno, and S.J. Allen, “A narrowband plasmonic terahertz detector with a monolithic hot electron bolometer”, Proc. SPIE 7215, 721503 (2009). http://dx.doi.org/10.1117/12.809619CrossrefGoogle Scholar

  • [261] W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Łusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. El Fatimy, Y.M. Meziani, and T. Otsuji, “Field effect transistors for terahertz detection: physics and first imaging applications”, J. Infrared Millim. Te. 30, 1319–1337 (2009). Google Scholar

  • [262] W. Knap, D. Coquillat, N. Dyakonova, F. Teppe, O. Klimenko, H. Videlier, S. Nadar, J. Łusakowski, G. Valusis, F. Schustera, B. Giffardd, T. Skotnickie, C. Gaquiere, and A. El Fatimy, “Plasma excitations in field effect transistors for terahertz detection and emission”, C.R. Phys. 11, 433–443 (2010). http://dx.doi.org/10.1016/j.crhy.2010.06.010CrossrefGoogle Scholar

  • [263] W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M.S. Shur, “Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors”, Appl. Phys. Lett. 85, 675–677 (2002). http://dx.doi.org/10.1063/1.1775034CrossrefGoogle Scholar

  • [264] F. Teppe, M. Orlov, A. El Fatimy, A. Tiberj, W. Knap, J. Torres, V. Gavrilenko, A. Shchepetov, Y. Roelens, and S. Bollaert, “Room temperature tunable detection of subterahertz radiation by plasma waves in nanometer InGaAs transistors”, Appl. Phys. Lett. 89, 222109 (2006). http://dx.doi.org/10.1063/1.2392999CrossrefGoogle Scholar

  • [265] R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, and C. Fenouillet-Beranger, “Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power”, Appl. Phys. Lett. 89, 253511 (2006). http://dx.doi.org/10.1063/1.2410215CrossrefGoogle Scholar

  • [266] V.I. Gavrilenko, E.V. Demidov, K.V. Marem’yanin, S.V. Morozov, W. Knap, and J. Lusakowski, “Electron transport and detection of terahertz radiation in a GaN/AlGaN submicrometer field-effect transistor”, Semiconductors 41, 232–234 (2007). http://dx.doi.org/10.1134/S1063782607020224CrossrefGoogle Scholar

  • [267] Y.M. Meziani, M. Hanabe, A. Koizumi, T. Otsuji, and E. Sano, “Self oscillation of the plasma waves in a dual grating gates HEMT device”, Int. Conf. Indium Phosphide and Related Materials, Conf. Proceedings, 534–537, Matsue, 2007. Google Scholar

  • [268] A.M. Hashim, S. Kasai, and H. Hasegawa, “Observation of first and third harmonic responses in two-dimensional AlGaAs/GaAs HEMT devices due to plasma wave interaction”, Superlattice Microst. 44, 754–760 (2008). http://dx.doi.org/10.1016/j.spmi.2008.08.003CrossrefGoogle Scholar

  • [269] V. Ryzhii, A. Satou, I. Khmyrova, M. Ryzhii, T. Otsuji, V. Mitin, and M.S. Shur, “Plasma effects in lateral Schottky junction tunneling transit-time terahertz oscillator”, J. Phys.: Conf. Ser. 38, 228–233 (2006). http://dx.doi.org/10.1088/1742-6596/38/1/055CrossrefGoogle Scholar

  • [270] X.G. Peralta, S.J. Allen, M.C. Wanke, N.E. Harff, J.A. Simmons, M.P. Lilly, J.L. Reno, P.J. Burke, and J.P. Eisenstein, “Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors”, Appl. Phys. Lett. 81, 1627–1630 (2002). http://dx.doi.org/10.1063/1.1497433CrossrefGoogle Scholar

  • [271] M. Dyakonov, and M.S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current”, Phys. Rev. Lett. 71, 2465–2468 (1993). http://dx.doi.org/10.1103/PhysRevLett.71.2465CrossrefGoogle Scholar

  • [272] M. Dyakonov and M. Shur, “Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid”, IEEE T. Electron Dev. 43, 1640–1646 (1996). http://dx.doi.org/10.1109/16.536809CrossrefGoogle Scholar

  • [273] M. Shur and V. Ryzhii, “Plasma wave electronics”, Int. J. High Speed Electr. Syst. 13, 575–600 (2003). http://dx.doi.org/10.1142/S0129156403001831CrossrefGoogle Scholar

  • [274] A. Eguiluz, T.K. Lee, J.J. Quinn, and K.W. Chiu, “Interface excitations in metal-insulator-semiconductor structures”, Phys. Rev. B11, 4989–4993 (1975). CrossrefGoogle Scholar

  • [275] S. Kang, P.J. Burke, L.N. Pfeifer, and K.W. West, “Resonant frequency response of plasma wave detector”, Appl. Phys. Lett. 89 213512 (2006). Google Scholar

  • [276] F. Teppe, A. El Fatimy, S. Boubanga, D. Seliuta, G. Valusis, B. Chenaud, and W. Knap, “Terahertz resonant detection by plasma waves in nanometric transistors”, Acta Phys. Pol. A113, 815–820 (2008). Google Scholar

  • [277] D. Veksler, F. Teppe, A.P. Dmitriev, V.Yu. Kachorovskii, W. Knap, and M.S. Shur, “Detection of terahertz radiation in gated two-dimensional structures governed by dc current”, Phys. Rev. B73, 125328 (2006). Google Scholar

  • [278] E. Öjefors, A. Lisauskas, D. Glaab, H.G. Roskos, and U.R. Pfeiffer, lrdTerahertz imaging detectors in CMOS technology”, J. Infrared Millmi. Te. 30, 1269–1280 (2009). Google Scholar

  • [279] E. Öjefors, U.R. Pfeiffer, A. Lisauskas, and H.G. Roskos, “A 0.65 THz focal-plane array in a quarter-micron CMOS process technology”, IEEE J. Solid-St. Circ. 44, 1968–1976 (2009). http://dx.doi.org/10.1109/JSSC.2009.2021911Google Scholar

  • [280] P.J. Burke, “Carbon nanotube devices for GHz to THz applications”, Proc. SPIE 5593, 52–61 (2004). http://dx.doi.org/10.1117/12.568159CrossrefGoogle Scholar

  • [281] C.M. Sze. Physics of Semiconductor Devices, Wiley, New York, 1981. Google Scholar

  • [282] V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A.A. Dubinom, and V.Ya. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures”, J. Appl. Phys. 106, 084507-1–6 (2009). http://dx.doi.org/10.1063/1.3247541CrossrefGoogle Scholar

  • [283] V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures”, J. Appl. Phys. 107, 054512-1–7 (2010). CrossrefGoogle Scholar

  • [284] S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley, Berlin, 2004. Google Scholar

  • [285] Y. Kawano, T. Fuse, S. Toyokawa, T. Uchida, and K. Ishibashi, “Terahertz photon-assisted tunneling in carbon nanotube quantum dots”, J. Appl. Phys. 103, 034307 (2008). http://dx.doi.org/10.1063/1.2838237CrossrefGoogle Scholar

  • [286] Y. Kawano, T. Uchida, and K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor”, Appl. Phys. Lett. 95, 083123-1–3 (2009). http://dx.doi.org/10.1063/1.3205125CrossrefGoogle Scholar

  • [287] K.S. Yngvesson, K. Fu, B. Fu, R. Zannoni, J. Nicholson, S.H. Adams, A. Ouarraoui, J. Donovan and E. Polizzi, “Experimental detection of terahertz radiation in bundles of single wall carbon nanotubes”, Proc. 19th Int. Symp. Space THz Techn., Groningen, 304–313 (2008). Google Scholar

  • [288] Y. Wang, K. Kempa, B. Kimball, J.B. Carlson, G. Benham, W.Z. Li, T. Kempa, J. Rybczynski, A. Herczynski, and Z.F. Ren, “Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes”, Appl. Phys. Lett. 85, 2607–2609 (2004). http://dx.doi.org/10.1063/1.1797559CrossrefGoogle Scholar

  • [289] Y. Wang, Q. Wu, X. He, X. Sun, and T. Gui, “Radiation properties of carbon nanotubes antenna at terahertz/infrared range”, Int. J. Infrared Milli. 29, 35–42 (2008). http://dx.doi.org/10.1007/s10762-007-9306-9CrossrefGoogle Scholar

  • [290] O. Astavief, S. Komiyama, T. Kutsuwa, V. Antonov, Y. Kawaguchi, and K. Hirakawa, “Single-photon detector in the microwave range”, Appl. Phys. Lett. 80, 4250–4252 (2002). http://dx.doi.org/10.1063/1.1482787CrossrefGoogle Scholar

  • [291] H. Hashiba, V. Antonov, L. Kulik, A. Tzalenchuk, P. Kleind- schmid, S. Giblin, and S. Komiyama, “Isolated quantum dot in application to terahertz photon counting”, Phys. Rev. B73, 081310:1–4 (2006). Google Scholar

  • [292] X.H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector”, Appl. Phys. Lett. 89, 031117-1–3 (2006). CrossrefGoogle Scholar

  • [293] T. Ueda, Z. An, S. Komiyama, and K. Hirakawa, “Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer”, J. Appl. Phys. 103, 093109:1–7 (2008). CrossrefGoogle Scholar

  • [294] T. Ueda and S. Komiyama, “Novel ultra-sensitive detectors in the 10–50 μm wavelength range”, Sensors 10, 8411–8423 (2010). http://dx.doi.org/10.3390/s100908411CrossrefGoogle Scholar

  • [295] D. Seliuta, I. Kaalynas, V. Tamoinas, S. Balakauskas, Z. Martnas, S. Amontas, G. Valuis, A. Lisauskas, H.G. Roskos, and K. Köhler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature”, Electron. Lett. 44, 825–827 (2006). http://dx.doi.org/10.1049/el:20061224CrossrefGoogle Scholar

  • [296] G. Valuis, D. Seliuta, V. Tamoinas, R. Simnikis, S. Balakauskas, and I. Kaalynas, “Selective and broadband terahertz sensors based on GaAs nanostructures”, Workshop THz Wave Technology, Bucharest, 19–20 May, 2008. Google Scholar

  • [297] J.-H. Dai, J.-H. Lee, Y.-L. Lin, and S.-C. Lee, “In(Ga)As quantum rings for terahertz detectors”, J. Appl. Phys. 47, 2924–2926 (2008). http://dx.doi.org/10.1143/JJAP.47.2924CrossrefGoogle Scholar

  • [298] S. Bhowmick, G. Huang, W. Guo, C.S. Lee, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “High-performance quantum ring detector for the 1–3 terahertz range”, Appl. Phys. Lett. 96, 231103-1–3 (2010). http://dx.doi.org/10.1063/1.3447364Google Scholar

  • [299] S. Kim, J.D. Zimmerman, P. Focardi, A.C. Gossard, D.H. Wu, and M.S. Sherwin, “Room temperature terahertz detection based on bulk plasmons in antenna-coupled GaAs field effect transistors”, Appl. Phys. Lett. 92, 253508-1–3 (2008). CrossrefGoogle Scholar

  • [300] E.A. Shaner, A.D. Grine, J.L. Reno, M.C. Wanke, and S.J. Allen, “Next-generation detectors: Plasmon grating-gate devices have potential as tunable terahertz detectors”, Laser Focus World, January 2008. Google Scholar

  • [301] G.C. Dyer, J.D. Crossno, G.R. Aizin, E.A. Shaner, M.C. Wanke, J.L. Reno, and S.J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometr”, J. Phys.: Condens. Mat. 21, 1958031-1–6 (2009). http://dx.doi.org/10.1088/0953-8984/21/19/195803CrossrefGoogle Scholar

  • [302] T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano, “A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure”, Opt. Express 14, 4815–4825 (2006). http://dx.doi.org/10.1364/OE.14.004815CrossrefGoogle Scholar

About the article

Published Online: 2011-03-07

Published in Print: 2011-09-01


Citation Information: Opto-Electronics Review, Volume 19, Issue 3, Pages 346–404, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-011-0033-3.

Export Citation

© 2011 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in