Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
See all formats and pricing
More options …
Volume 19, Issue 3 (Sep 2011)


Phase maps of polycrystalline human biological fluids networks: statistical, correlation, and fractal analysis

Y. Ushenko
  • Correlation Optics Department, Chernivtsi National University, 2 Kotsyubinsky Str., 58012, Chernivtsi, Ukraine
  • Email:
Published Online: 2011-03-07 | DOI: https://doi.org/10.2478/s11772-011-0034-2


The complex statistical and fractal analysis of phase properties, inherent to birefringence networks of liquid crystals consisting of optically-thin layers, prepared from synovial fluid taken from human joints, is performed in this work. Within the framework of a statistical approach, the authors have investigated values and ranges for changes of statistical moments of the 1-st to the 4-th orders that characterize coordinate distributions for phase shifts between orthogonal components of amplitudes inherent to laser radiation, transformed by synovial fluid layers, for human joints with various pathologies. The correlation criteria for differentiation of phase maps, describing pathologically changed liquid-crystal networks, have been ascertained. In the framework of the fractal approach, dimensions of self-similar coordinate phase distributions as well as features of transformation of logarithmic dependences for power spectra of these distributions for various types of human joint pathologies are determined.

Keywords: polarization; birefringence; correlation; phase; Jones matrix; liquid crystal; biological fluid

  • [1] A.G. Ushenko, and V.P. Pishak, “Laser polarimetry of biological tissue: principles and applications”, in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, Vol. 1, pp. 93–138, edited by V.V. Tuchin, Kluwer Academic Publishers, 2004. Google Scholar

  • [2] G. Yao and L.V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography”, Opt. Lett. 24, 537–539 (1999). http://dx.doi.org/10.1364/OL.24.000537CrossrefGoogle Scholar

  • [3] X. Wang, G. Yao, and L.V. Wang, “Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose”, Appl. Opt. 41, 792–801 (2002). http://dx.doi.org/10.1364/AO.41.000792CrossrefGoogle Scholar

  • [4] A.G. Ushenko, “Polarization structure of laser scattering fields”, Opt. Eng. 34, 1088–1093 (1995). http://dx.doi.org/10.1117/12.197186CrossrefGoogle Scholar

  • [5] S. Jiao, G. Yao, and L.V. Wang, “Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography”, Appl. Opt. 39, 6318–6324 (2000). http://dx.doi.org/10.1364/AO.39.006318CrossrefGoogle Scholar

  • [6] S. Jiao and L.V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography”, Opt. Lett. 27, 101–103 (2002). http://dx.doi.org/10.1364/OL.27.000101CrossrefGoogle Scholar

  • [7] A.G. Ushenko, “Laser diagnostics of biofractals”, Quantum Electron. 29, 1078–1084 (1999). http://dx.doi.org/10.1070/QE1999v029n12ABEH001635CrossrefGoogle Scholar

  • [8] S.G. Demos and R.R. Alfano, “Optical polarization imaging”, Appl. Opt. 36, 150–155 (1997). http://dx.doi.org/10.1364/AO.36.000150CrossrefGoogle Scholar

  • [9] A.G. Ushenko, “The vector structure of laser biospeckle fields and polarization diagnostics of collagen skin structures”, Laser Phys. 10, 1143–1149 (2000). Google Scholar

  • [10] J.F. de Boer, T.E. Milner, M.J.C. van Gemert, and J.S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography”, Opt. Lett. 22, 934–936 (1997). http://dx.doi.org/10.1364/OL.22.000934CrossrefGoogle Scholar

  • [11] A.G. Ushenko, “Polarization correlometry of angular structure in the microrelief pattern of rough surfaces”, Optics Spectrosc. 92, 227–229 (2002). http://dx.doi.org/10.1134/1.1454033CrossrefGoogle Scholar

  • [12] O.V. Angelsky, A.G. Ushenko, and Y.G. Ushenko, “Complex degree of mutual polarization of biological tissue coherent images for the diagnostics of their physiological state”, J. Biomed Opt. 10, 060502 (2005). http://dx.doi.org/10.1117/1.2149844CrossrefGoogle Scholar

  • [13] O.V. Angelsky, D.N. Burkovets, P.P. Maksimyak, and S.G. Hanson, “Applicability of the singular-optics concept for diagnostics of random and fractal rough surfaces”, Appl. Opt. 42, 4529–4540 (2003). http://dx.doi.org/10.1364/AO.42.004529CrossrefGoogle Scholar

  • [14] A.G. Ushenko, I.Z. Misevich, V. Istratiy, I. Bachyns’ka, A.P. Peresunko, O.K. Numan, and T.G. Moiysuk, “Evolution of statistic moments of 2D-distributions of biological liquid crystal net Mueller matrix elements in the process of their birefringent structure changes”, Advances in Optical Technologies 2010, 423145 (2010). Google Scholar

  • [15] O.V. Angelsky, D.N. Burkovets, A.V. Kovalchuk, and S.G. Hanson, “On the fractal description of rough surfaces”, Appl. Opt. 41, 4620–4629 (2002). http://dx.doi.org/10.1364/AO.41.004620CrossrefGoogle Scholar

  • [16] O.V. Angelsky, A.G. Ushenko, Y.G. Ushenko, and Y.Y. Tomka “Polarization singularities of biological tissues images”, J. Biomed. Opt. 11, 054030 (2006). http://dx.doi.org/10.1117/1.2360527CrossrefGoogle Scholar

  • [17] O.V. Angelsky, A.G. Ushenko, Yu.A. Ushenko, and Ye.G. Ushenko, “Polarization singularities of the object field of skin surface”, J. Phys. D: Appl. Phys. 39, 3547–3558 (2006). http://dx.doi.org/10.1088/0022-3727/39/16/005CrossrefGoogle Scholar

  • [18] O.V. Angelsky, A.G. Ushenko, and Ye.G. Ushenko, “2-D stokes polarimetry of biospeckle tissues images in pre-clinic diagnostics of their pre-cancer states”, J. Holography Speckle 2, 26–33 (2005). http://dx.doi.org/10.1166/jhs.2005.006CrossrefGoogle Scholar

  • [19] A.G. Ushenko, “Stokes-correlometry of biotissues”, Laser Phys. 10, 1286–1292 (2000). Google Scholar

  • [20] O.V. Angelsky, G.V. Demianovsky, A.G. Ushenko, D.N. Burkovets, and Yu.A. Ushenko, “Wavelet analysis of two-dimensional birefringence images of architectonics in biotissues for diagnosing pathological changes”, J. Biomed. Opt. 9, 679–690 (2004). http://dx.doi.org/10.1117/1.1755720CrossrefGoogle Scholar

  • [21] O.V. Dubolazov, A.G. Ushenko, V.T. Bachynsky, A.P. Peresunko, and O.Ya. Vanchulyak, “On the feasibilities of using the wavelet analysis of Mueller matrix images of biological crystals”, Advances in Optical Technologies 2010, 162832 (2010). http://dx.doi.org/10.1155/2010/162832CrossrefGoogle Scholar

  • [22] O.V. Angelsky, A.G. Ushenko, and Ye.G. Ushenko, “Investigation of the correlation structure of biological tissue polarization images during the diagnostics of their oncological changes”, Phys. Med. Biol. 50, 4811–4822 (2005). http://dx.doi.org/10.1088/0031-9155/50/20/005CrossrefGoogle Scholar

  • [23] O.V. Angelsky, A.G. Ushenko, Yu.A. Ushenko, Ye.G. Ushenko, Yu.Ya. Tomka, and V.P. Pishak, “Polarization-correlation mapping of biological tissue coherent images”, J. Biomed. Opt. 10, 064025 (2005). http://dx.doi.org/10.1117/1.2148251CrossrefGoogle Scholar

  • [24] E.I. Olar, A.G. Ushenko, and Yu.A. Ushenko, “Correlation microstructure of the Jones matrices for multifractal networks of biotissues”, Laser Phys. 14, 1012–1018 (2004). Google Scholar

  • [25] O.V. Angelsky, A.G. Ushenko, D.N. Burcovets, and Yu.A. Ushenko, “Polarization visualization and selection of biotissue image two-layer scattering medium”, J. Biomed. Opt. 10, 014010 (2005). http://dx.doi.org/10.1117/1.1854674CrossrefGoogle Scholar

  • [26] B.B. Mandelbrot, The Fractal Geometry of Nature, San Francisco, W.H. Freeman, 1982. Google Scholar

  • [27] D.J. Whitehouse, “Fractal or fiction”, Wear 249, 345–353 (2001). http://dx.doi.org/10.1016/S0043-1648(01)00535-XCrossrefGoogle Scholar

  • [28] O.V. Angel’skii, A.G. Ushenko, A.D. Arkhelyuk, S.B. Ermolenko, and D.N. Burkovets, “Structure of matrices for the transformation of laser radiation by biofractals”, Quantum Electron. 29, 1074–1077 (1999). http://dx.doi.org/10.1070/QE1999v029n12ABEH001634CrossrefGoogle Scholar

  • [29] A.G. Ushenko, “Polarization contrast enhancement of images of biological tissues under the conditions of multiple scattering”, Opt. Spectrosc. 91, 937–940 (2001). http://dx.doi.org/10.1134/1.1429711CrossrefGoogle Scholar

  • [30] A.G. Ushenko, “Laser probing of biological tissues and the polarization selection of their images”, Opt. Spectrosc. 91, 932–936 (2001). http://dx.doi.org/10.1134/1.1429710CrossrefGoogle Scholar

  • [31] A.G. Ushenko, “Correlation processing and wavelet analysis of polarization images of biological tissues”, Opt. Spectrosc. 91, 773–778 (2002). http://dx.doi.org/10.1134/1.1420861CrossrefGoogle Scholar

  • [32] A.G. Ushenko, “Laser polarimetry of polarization-phase statistical moments of the object field of optically anisotropic scattering layers”, Opt. Spectrosc. 91, 313–316 (2001). http://dx.doi.org/10.1134/1.1397917CrossrefGoogle Scholar

  • [33] O.V. Angelsky, P.P. Maksimyak, V.V. Ryukhtin, and S.G. Hanson, “New feasibilities for characterizing rough surfaces by optical-correlation techniques”, Appl. Opt. 40, 5693–5707 (2001). http://dx.doi.org/10.1364/AO.40.005693CrossrefGoogle Scholar

  • [34] O.V. Angelsky, A.P. Maksimyak, P.P. Maksimyak, and S.G. Hanson, “Spatial behaviour of singularities in fractal- and gaussian speckle fields”, TheOpenOptics Journal 15, 29–43 (2009). Google Scholar

  • [35] O.V. Angelsky, S.G. Hanson, C.Yu. Zenkova, M.P. Gorsky, and N.V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves”, Opt. Express 17, 15623–15634 (2009). http://dx.doi.org/10.1364/OE.17.015623CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2011-03-07

Published in Print: 2011-09-01

Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-011-0034-2.

Export Citation

© 2011 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in