Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 20, Issue 1 (Mar 2012)

Issues

Ultrasensitive laser spectroscopy for breath analysis

J. Wojtas / Z. Bielecki / T. Stacewicz / J. Mikołajczyk / M. Nowakowski
Published Online: 2011-12-29 | DOI: https://doi.org/10.2478/s11772-012-0011-4

Abstract

At present there are many reasons for seeking new methods and technologies that aim to develop new and more perfect sensors for different chemical compounds. However, the main reasons are safety ensuring and health care. In the paper, recent advances in the human breath analysis by the use of different techniques are presented. We have selected non-invasive ones ensuring detection of pathogenic changes at a molecular level. The presence of certain molecules in the human breath is used as an indicator of a specific disease. Thus, the analysis of the human breath is very useful for health monitoring. We have shown some examples of diseases’ biomarkers and various methods capable of detecting them. Described methods have been divided into non-optical and optical methods. The former ones are the following: gas chromatography, flame ionization detection, mass spectrometry, ion mobility spectrometry, proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry. In recent twenty years, the optical methods have become more popular, especially the laser techniques. They have a great potential for detection and monitoring of the components in the gas phase. These methods are characterized by high sensitivity and good selectivity. The spectroscopic sensors provide the opportunity to detect specific gases and to measure their concentration either in a sampling place or a remote one. Multipass spectroscopy, cavity ring-down spectroscopy, and photo-acoustic spectroscopy were characterised in the paper as well.

Keywords: trace matter detection; breath analysis; diseases biomarkers; absorption spectroscopy; laser spectroscopy; multi-pass spectroscopy; MPS; cavity ring-down spectroscopy; CRDS; cavity enhanced absorption spectroscopy; CEAS; photoacoustic spectroscopy; PAS

  • [1] American Thoracic Society, ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, Am. J. Respir. Crit. CareMed. 171, 912–930 (2005). http://dx.doi.org/10.1164/rccm.200406-710STCrossrefGoogle Scholar

  • [2] A. Michalski, Metrology in Medicine — Selected Problems, Military University of Technology Publishing Office, Warsaw, 2011. Google Scholar

  • [3] L. Pauling, A.B. Robinson, R. Teranishi, and P. Cary, “Quantitative analysis of urine vapour and breath by gas-liquid partition chromatography”, P. Natl. Acad. Sci. USA 68, 2374–2384 (1971). http://dx.doi.org/10.1073/pnas.68.10.2374CrossrefGoogle Scholar

  • [4] H. O’Neill, S.M. Gordon, M. O’Neill, R.D. Gibbons, and J.P. Szidon, “A computerized classification technique for screening for the presence of breath biomarkers in lung cancer”, Clin. Chem. 34, 1613–1618 (1988). Google Scholar

  • [5] C. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits”, Sensors 9, 8230–8262 (2009). http://dx.doi.org/10.3390/s91008230CrossrefGoogle Scholar

  • [6] T. Kondo, T. Mitsui, M. Kitagawa, and Y. Nakae, “Association of fasting breath nitrous oxide concentration with gastric juice nitrate and nitrite concentrations and helicobacter pylori infection”, Digest. Dis. Sci. 45, 2054–2057 (2000). http://dx.doi.org/10.1023/A:1005607120708CrossrefGoogle Scholar

  • [7] R.A. Dweik, D. Laskowski, H.M. Abu-Soud, F.T. Kaneko, R. Hutte, D.J. Stuehr, and S.C. Erzurum, “Nitric oxide synthesis in the lung, regulation by oxygen through a kinetic mechanism”, J. Clin. Invest. 101, 660–666 (1998). http://dx.doi.org/10.1172/JCI1378CrossrefGoogle Scholar

  • [8] B. Enderby, D. Smith, W. Carroll, and W. Lenney, “Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis”, Pediatr. Pulm. 44, 142–147 (2009). http://dx.doi.org/10.1002/ppul.20963CrossrefGoogle Scholar

  • [9] Z. Witkiewicz, Principles of Chromatography, Scientific-Technical Publishers (WNT), Warsaw, 2000. (in Polish) Google Scholar

  • [10] W. Mueller, J. Schubert, A. Benzing, and K. Geiger, “Method for analysis of exhaled air by microwave energy desorption coupled with gas chromatography-flame ionization detection-mass spectrometry”, J. Chromatogr. B716, 27–38 (1998). Google Scholar

  • [11] X. Chen, F. Xu, Y. Wang, Y. Pan, D. Lu, and P. Wang, “A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis”, Cancer 110, 835–844 (2007). http://dx.doi.org/10.1002/cncr.22844CrossrefGoogle Scholar

  • [12] A. Ulanowska, T. Ligor, M. Michel, and B. Buszewski, “Hyphenated and unconventional methods for searching volatile cancer biomarkers”, Ecol. Chem. En. 17, 9–23 (2010). Google Scholar

  • [13] http://www.chromacademy.com/resolver/nov2010/fig-jpg Google Scholar

  • [14] http://sift-ms.net/user/cimage/SiftMsColourpng Google Scholar

  • [15] T. Pustelny, Physical and Technical Aspects of Optoelectronic Sensors, Silesian University of Technology Publishing Office, 2005. Google Scholar

  • [16] http://www.tms.org/pubs/journals/JOM/0010/Ivanov/Ivanov-0010.html Google Scholar

  • [17] http://www.nature.com/nmat/journal/v2/n1/full/nmat768.html Google Scholar

  • [18] A. Bratkowski, A. Korcala, Z. Łukasik, P. Borowski, and W. Bala, “Novel gas sensor based on porous silicon measured by photovoltage, photoluminescence, and admittance spectroscopy”, Opto-Electron. Rev. 13, 35–38 (2005). Google Scholar

  • [19] R. Maniewski, A. Liebert, M. Kacprzak, and A. Zbieć, “Selected application of near-infrared optical methods in medical diagnosis”, Opto-Electron. Rev. 12, 255–262 (2004). Google Scholar

  • [20] J. Puton, K. Jasek, B. Siodłowski, A. Knap, and K. Wiśniewski, “Optimization of a pulsed IR source for NDIR gas analysis”, Opto-Electron. Rev. 10, 97–103 (2002). Google Scholar

  • [21] M. Walczak, “Operant conditioning of dogs for detection of odour markers of cancer diseases”, PhD Dissertation, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Warsaw, Poland, 2009. (in Polish) Google Scholar

  • [22] P. Kowalczyk, Physics of Molecules, Polish Scientific Publishers (PWN), Warsaw, 2000. (in Polish) Google Scholar

  • [23] M.F. Merienne, A. Jenouvrier, and B. Coquart, “The NO2 absorption spectrum. I: absorption cross-sections at ambient temperature in the 300–500 nm region”, J. Atmos. Chem. 20, 281–297 (1995). http://dx.doi.org/10.1007/BF00694498Google Scholar

  • [24] M.I. Mazurenka, B.I. Fawcett, J.M.F. Elks, D.E. Shallcross, and A.J. Orr-Ewing, “410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2”, Chem. Phys. Lett. 367, 1–9 (2003). http://dx.doi.org/10.1016/S0009-2614(02)01652-4CrossrefGoogle Scholar

  • [25] J. Wojtas, A. Czyżewski, T. Stacewicz, and Z. Bielecki, “Detection of NO2 using cavity enhanced methods”, Opt. Appl. 36, 461–467 (2006). Google Scholar

  • [26] K. Holc, Z. Bielecki, J. Wojtas, P. Perlin, J. Goss, A. Czyżewski, P. Magryta, and T. Stacewicz, “Blue tunable laser diodes for trace matter detection”, Opt. Appl. 40, 641–651 (2010). Google Scholar

  • [27] T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity Ring Down Spectroscopy: detection of trace amounts of matter”, Opto-Electron. Rev. 20, (2012). (in press) CrossrefGoogle Scholar

  • [28] http://www.cfa.harvard.edu/HITRAN/ Google Scholar

  • [29] J. Wojtas, J. Mikołajczyk, M. Nowakowski, B. Rutecka, R. Mędrzycki, and Z. Bielecki, “Appling CEAS method to UV, VIS, and IR spectroscopy sensors”, B. Pol. Acad. Sci-Te. 59, No. 4 (brak stron) (2011). Google Scholar

  • [30] http://badc.nerc.ac.uk/data/esa-wv Google Scholar

  • [31] http://www.nist.gov/pml/data/xcom/index.cfm Google Scholar

  • [32] http://www.teledyne-ai.com/pdf/lga-3500.pdf Google Scholar

  • [33] J.M. Chalmers, Mid-infrared Spectroscopy. Spectroscopy in Process Analysis, CRC Press LLC, 117, 1999. Google Scholar

  • [34] http://www.ipm.fraunhofer.de Google Scholar

  • [35] A. O’Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544–2551 (1988). http://dx.doi.org/10.1063/1.1139895CrossrefGoogle Scholar

  • [36] K.W. Busch and M.A. Busch, Cavity-Ringdown Spectroscopy, an Ultratrace–Absorption Measurement Technique, ACS Symposium Series, American Chemical Society, Washington DC, 1999. Google Scholar

  • [37] G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications, Wiley-Blackwell, 2009. Google Scholar

  • [38] Z. Bielecki and T. Stacewicz, Optoelectronic Sensor of Nitrogen Dioxide, Analysis and Construction Requirements, Military University of Technology Publishing Office, Warsaw, 2011. (in Polish) Google Scholar

  • [39] D. Romanini, A.A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy”, Chem. Phys. Lett. 264, 316–322 (1997). http://dx.doi.org/10.1016/S0009-2614(96)01351-6CrossrefGoogle Scholar

  • [40] G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications”, Int. Rev. Phys. Chem. 19, 565–607 (2000). http://dx.doi.org/10.1080/014423500750040627CrossrefGoogle Scholar

  • [41] J. Ye, L.S. Ma, and J.L. Hall, “Ultrastable optical frequency reference at 064 μm using a C2HD molecular overtone transition”, IEEE T. Instrument. Meas. 46, 178–182 (1997). http://dx.doi.org/10.1109/19.571806Google Scholar

  • [42] R. Engeln, G. Berden, R. Peeters, and G. Meier, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy”, Rev. Sci. Instrum. 69, 3763–3769 (1998). http://dx.doi.org/10.1063/1.1149176CrossrefGoogle Scholar

  • [43] J.D. Ayers, R.L. Apodaca, W.R. Simpson, and D.S. Baer, “Off-axis cavity ring-down spectroscopy: application to atmospheric nitrate radical detection”, Appl. Opt. 44, 7239–7242 (2005). http://dx.doi.org/10.1364/AO.44.007239CrossrefGoogle Scholar

  • [44] L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser”, Appl. Phys. B72, 859–863 (2001). CrossrefGoogle Scholar

  • [45] J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Uenten, D.S. Urevig, D.J. Spencer, and D.J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method”, Appl. Opt. 19, 144–147 (1980). http://dx.doi.org/10.1364/AO.19.000144CrossrefGoogle Scholar

  • [46] F.K. Tittel, Yu. Bakhirkin, A.A. Kosterev, G. Wysocki, and S. So & R.F. Curl, “Recent advances of quantum and inter-band cascade laser based gas sensor technology”, www.lancs.ac.uk/depts/spc/conf/miomd-7/Tittel.ppt Google Scholar

  • [47] V. Spagnolo, R. Lewicki, L. Dong, and F. K. Tittel, “Quantum-cascade-laser-based optoacoustic detection for breath sensor applications”, IEEE 978, 332–335 (2011). Google Scholar

  • [48] A. O’Keefe, “Integrated cavity output analysis of ultra-weak absorption”, Chem. Phys. Lett. 293, 331–336 (1998). http://dx.doi.org/10.1016/S0009-2614(98)00785-4CrossrefGoogle Scholar

  • [49] A. O’Keefe, J.J. Scherer, and J.B. Paul, “CW integrated cavity output spectroscopy”, Chem. Phys. Lett. 307, 343–349 (1999). http://dx.doi.org/10.1016/S0009-2614(99)00547-3CrossrefGoogle Scholar

  • [50] H. Dahnke, D. Kleine, C. Urban, P. Hering, and M. Murtz, “Isotopic ratio measurement of methane in ambient air using mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O. 72, 121–125 (2001). http://dx.doi.org/10.1007/s003400000509CrossrefGoogle Scholar

  • [51] D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a diffe rence frequency generation spectrometer”, Appl. Phys. B-Lasers O. 85, 437–443 (2006). http://dx.doi.org/10.1007/s00340-006-2288-9CrossrefGoogle Scholar

  • [52] D. Halmer, G. von Basum, P. Hering, and M. Murtz, “Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulphide”, Opt. Lett. 30, 2314–2316 (2005). http://dx.doi.org/10.1364/OL.30.002314CrossrefGoogle Scholar

  • [53] T. Starecki, Selected Aspects of Photoacoustic Instruments Optimization, BTC, Legionowo, 2009. Google Scholar

  • [54] A.A. Kosterev, Y.A. Bakhirkin, R.F. Curl, and F.K. Tittel, “Quartz-enhanced photoacoustic spectroscopy”, Opt. Lett. 27, 1902–1904 (2002). http://dx.doi.org/10.1364/OL.27.001902CrossrefGoogle Scholar

  • [55] R.F. Curl and F.K. Tittel, “Tunable infrared laser spectroscopy”, Annu. Rep. Prog. Chem. Sect. C98, 217–270 (2002). http://dx.doi.org/10.1039/b111194aCrossrefGoogle Scholar

  • [56] F.K. Tittel, D. Richter, and A. Fried, “Mid-infrared laser applications in spectroscopy”, Springer. Topics Appl. Phys. 89, 445–510 (2003). Google Scholar

  • [57] A. Kosterev, F.K. Tittel, D. Serebryakov, A. Malinovsky, and A. Morozov, “Applications of quartz tuning fork in spectroscopic gas sensing”, Rev. Sci. Instrum. 76, 043105 (2005). http://dx.doi.org/10.1063/1.1884196CrossrefGoogle Scholar

  • [58] M. Bugajski, K. Kosiel, A. Szerling, J. Kubacka-Traczyk, I. Sankowska, P. Karbownik, A. Trajnerowicz, E. Pruszyńska Karbownik, K. Pierściński, and D. Pierścińska, “GaAs/AlGaAs (9.4 μm) quantum cascade lasers operating at 260 K”, B. Pol. Acad. Sci-Te. 58, 471–476 (2010). Google Scholar

  • [59] http://echozycia.ddsoft.pl/Files/file/%C5%81owcy%20oddech%C3%B3w.pdf Google Scholar

  • [60] P.C. Kamat, C.B. Roller, K. Namjou, J.D. Jeffers, A. Faramarzalian, R. Salas, and P.J. McCann, “Measurement of acetaldehyde in exhaled breath using a laser absorption spectrometer”, Appl. Opt. 46, 3969–3975 (2007). http://dx.doi.org/10.1364/AO.46.003969CrossrefGoogle Scholar

  • [61] C. Wang and A. Mbi, “A new acetone detection device using cavity ringdown spectroscopy at 266 nm: evaluation of the instrument performance using acetone sample solutions”, Meas. Sci. Technol. 18, 2731–2741 (2007). http://dx.doi.org/10.1088/0957-0233/18/8/051CrossrefGoogle Scholar

  • [62] C. Wang, A. Mbi, and M. Shepherd, “A study on breath acetone in diabetic patients using a cavity ring-down breath analyzer: Exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C”, IEEE Sens. 10, 54–63 (2010). http://dx.doi.org/10.1109/JSEN.2009.2035730Google Scholar

  • [63] C. Wang and A.B. Surampudi, “An acetone breath analyzer using cavity ring-down spectroscopy: an initial test with human subjects under various situations”, Meas. Sci. Technol. 19, 105604–105614 (2008). http://dx.doi.org/10.1088/0957-0233/19/10/105604CrossrefGoogle Scholar

  • [64] L.R. Narasimhan, W. Goodman, and C.K.N. Patel, “Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis”, P. Natl. Acad. Sci. USA 98, 4617–4621 (2001). http://dx.doi.org/10.1073/pnas.071057598CrossrefGoogle Scholar

  • [65] U. Lachish, S. Rotter, E. Adler, and U. El-Hanany, “Tunable diode laser based spectroscopic system for ammonia detection in human respiration”, Rev. Sci. Instrum. 58, 923–927 (1987). http://dx.doi.org/10.1063/1.1139577CrossrefGoogle Scholar

  • [66] J. Manne, O. Sukhorukov, W. Jager, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath”, Appl. Opt. 45, 9230–9237 (2006). http://dx.doi.org/10.1364/AO.45.009230CrossrefGoogle Scholar

  • [67] J. Manne, W. Jager, and J. Tulip, “Sensitive detection of ammonia and ethylene with a pulsed quantum cascade laser using intra and interpulse spectroscopic techniques”, Appl. Phys. B-Lasers O. 94, 337–344 (2009). http://dx.doi.org/10.1007/s00340-008-3285-yCrossrefGoogle Scholar

  • [68] K.L. Moskalenko, A.I. Nadezhdinskii, and I.A. Adamovskaya, “Human breath trace gas content study by tunable diode laser spectroscopy technique”, Infrared Phys. Techn. 37, 181–192 (1996). http://dx.doi.org/10.1016/1350-4495(95)00097-6CrossrefGoogle Scholar

  • [69] M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis”, Opt. Express 16, 2387–2397 (2008). http://dx.doi.org/10.1364/OE.16.002387CrossrefGoogle Scholar

  • [70] R. Lewicki, A.A. Kosterev, Y.A. Bakhirkin, D.M. Thomazy, J. Doty, L. Dong, and F.K. Tittel, “Real time ammonia detection in exhaled human breath with a quantum cascade laser based sensor”, IEEE 978, 1–2 (2009). Google Scholar

  • [71] M.M.J.W. Van Herpen, A.K.Y. Ngai, S.E. Bisson, J.H.P. Hackstein, E.J. Woltering, and F.J.M. Harren, “Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects”, Appl. Phys. B-Lasers O. 82, 665–669 (2006). http://dx.doi.org/10.1007/s00340-005-2119-4CrossrefGoogle Scholar

  • [72] E.R. Crosson, K.N. Ricci, B.A. Richman, F.C. Chilese, T.G. Owano, R.A. Provencal, M.W. Todd, J. Glasser, A.A. Kachanow, B.A. Paldus, T.G. Spence, and R.N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath”, Anal. Chem. 74, 2003–2007 (2002). http://dx.doi.org/10.1021/ac025511dCrossrefGoogle Scholar

  • [73] V. Weldon, J. O’Gorman, P. Phelan, J. Hegarty, and T. Tanbun-Ek, “H2S and CO2 gas sensing using DFB laser diodes emitting at 57 μm”, Sens. Actuat. B29, 101–107 (1995). Google Scholar

  • [74] G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R.F. Curl, and F.K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulphide”, Appl. Opt. 43, 6040–6046 (2004). http://dx.doi.org/10.1364/AO.43.006040CrossrefGoogle Scholar

  • [75] Ch. Roller, A.A. Kosterev, F.K. Tittel, K. Uehara, C. Gmachl, and D.L. Sivco, “Carbonyl sulfide detection with a thermoelectrically cooled midinfrared quantum cascade laser”, Opt. Lett. 28, 2052–2054 (2003). http://dx.doi.org/10.1364/OL.28.002052CrossrefGoogle Scholar

  • [76] M.R. McCurdy, Y. Bakhirkin, G. Wysocki, and F.K. Tittel, “Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy”, J. Biomed. Opt. 12, 034034:1–034034:9 (2007). http://dx.doi.org/10.1117/1.2747608CrossrefGoogle Scholar

  • [77] R. Bartlome and M.W. Sigrist, “Laser based human breath analysis: D/H isotope ratio increases following heavy water intake”, Opt. Lett. 34, 866–868 (2009). http://dx.doi.org/10.1364/OL.34.000866CrossrefGoogle Scholar

  • [78] K.R. Parameswaran, D.I. Rosen, M.G. Allen, A.M. Ganz, and T.H. Risby, “Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements”, Appl. Opt. 48, B73–B79 (2009). http://dx.doi.org/10.1364/AO.48.000B73CrossrefGoogle Scholar

  • [79] K.D. Skeldon, L.C. McMillan, C.A. Wyse, S.D. Monk, G. Gibson, C. Patterson,; T. France, C. Longbottom, and M.J. Padgett, “Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer”, Respir. Med. 100, 300–306 (2006). http://dx.doi.org/10.1016/j.rmed.2005.05.006CrossrefGoogle Scholar

  • [80] H. Dahnke, D. Kleine, C. Urban, P. Hering, and M. Murtz, “Isotopic ratio measurement of methane in ambient air using mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O. 72, 121–125 (2001). http://dx.doi.org/10.1007/s003400000509CrossrefGoogle Scholar

  • [81] G. von Basum, D. Halmer, P. Hering, M. Murtz, S. Schiller, F. Mueller, A. Popp, and F. Kuehnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer”, Opt. Lett. 29, 797–799 (2004). http://dx.doi.org/10.1364/OL.29.000797CrossrefGoogle Scholar

  • [82] C.S. Patterson, L.C. McMillan, K. Stevenson, K. Radhakrishnan, P.G. Shiels, M.J. Padgett, and K.D. Skeldon, “Dynamic study of oxidative stress in renal dialysis patients based on breath ethane measured by optical spectroscopy”, J. Breath Res. 1, 026005:1–026005:8 (2007). http://dx.doi.org/10.1088/1752-7155/1/2/026005CrossrefGoogle Scholar

  • [83] K.D. Skeldon, C. Patterson, C.A. Wyse, G.M. Gibson, M.J. Padgett, C. Longbottom, and L.C McMillan, “The potential offered by real-time, high-sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy”, J. Opt. A-Pure Appl. Op. 7, S376–S384 (2005). http://dx.doi.org/10.1088/1464-4258/7/6/019CrossrefGoogle Scholar

  • [84] A. Puiu, G. Giubileo, and C. Bangrazi, “Laser sensors for trace gases in human breath”, Int. J. Environ. A. Ch. 85, 1001–1012 (2005). http://dx.doi.org/10.1080/03067310500154395CrossrefGoogle Scholar

  • [85] D.C. Dumitras, D.C. Dutu, C. Matei, A.M. Magureanu, M. Petrus, C. Popa, and V. Patachia, “Measurements of ethylene concentration by laser photoacoustic techniques with applications at breath analysis”, Rom. Rep. Phys. 60, 593–602 (2008). Google Scholar

  • [86] J.H. Miller, Y.A. Bakhirkin, T. Ajtai, F.K. Tittel, C.J. Hill, and R.Q. Yang, “Detection of formaldehyde using off-axis integrated cavity output spectroscopy with an interband cascade laser”, Appl. Phys. — Laser O. 85, 391–396 (2006). http://dx.doi.org/10.1007/s00340-006-2310-2CrossrefGoogle Scholar

  • [87] D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN”, Appl. Phys. B-Laser O. 72, 947–952 (2001). http://dx.doi.org/10.1007/s003400100549CrossrefGoogle Scholar

  • [88] H. Dahnke, G. von Basum, K. Kleinermanns, P. Hering, and M. Murtz, “Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy”, Appl. Phys. B-Lasers O. 75, 311–316 (2002). http://dx.doi.org/10.1007/s00340-002-0986-5CrossrefGoogle Scholar

  • [89] M. Angelmahr, A. Miklos, and P. Hess, “Photoacoustic spectroscopy of formaldehyde with tunable laser radiation at the parts per billion level”, Appl. Phys. B-Lasers O. 85, 285–288 (2006). http://dx.doi.org/10.1007/s00340-006-2295-xCrossrefGoogle Scholar

  • [90] M. Horstjann, Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, C.M. Wong, C.J. Hill, and R.Q. Yang, “Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy”, Appl. Phys. B-Lasers O. 79, 799–803 (2004). http://dx.doi.org/10.1007/s00340-004-1659-3CrossrefGoogle Scholar

  • [91] D. Richter, A. Fried, B.P. Wert, J.G. Walega, and F.K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection”, Appl. Phys. B-Lasers O. 75, 281–288 (2002). http://dx.doi.org/10.1007/s00340-002-0948-yCrossrefGoogle Scholar

  • [92] L. Ciaffoni, R. Grilli, G. Hancock, A.J. Orr-Ewing, R. Peverall, and G.A.D. Ritchie, “3.5-μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module”, Appl. Phys. B-Lasers O. 94, 517–525 (2009). http://dx.doi.org/10.1007/s00340-008-3291-0Google Scholar

  • [93] D. Marinov, J.M. Rey, M.G. Muller, and M.W. Sigrist, “Spectroscopic investigation of methylated amines by a cavity-ringdown-based spectrometer”, Appl. Opt. 46, 3981–3986 (2007). http://dx.doi.org/10.1364/AO.46.003981CrossrefGoogle Scholar

  • [94] Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, and F.K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection”, Appl. Opt. 43, 2257–2266 (2004). http://dx.doi.org/10.1364/AO.43.002257CrossrefGoogle Scholar

  • [95] K. Namjou, C.B. Roller, T.E. Reich, J.D. Jeffers, G.L. McMillen, P.J. McCann, and M.A. Camp, “Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy”, Appl. Phys. B-Lasers O., 85, 427–435 (2006). http://dx.doi.org/10.1007/s00340-006-2301-3CrossrefGoogle Scholar

  • [96] L. Menzel, A.A. Kosterev, R.F. Curl, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser”, Appl. Phys. B-Lasers O. 72, 859–863 (2001). http://dx.doi.org/10.1007/s003400100562CrossrefGoogle Scholar

  • [97] A.A. Kosterev, A.L. Malinovsky, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, and A.Y. Cho, “Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser”, Appl. Opt. 40, 5522–5529 (2001). http://dx.doi.org/10.1364/AO.40.005522CrossrefGoogle Scholar

  • [98] C. Roller, K. Namjou, J.D. Jeffers, M. Camp, A. Mock, P.J. McCann, and J. Grego, “Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: application in monitoring respiratory inflammation”, Appl. Opt. 41, 6018–6029 (2002). http://dx.doi.org/10.1364/AO.41.006018CrossrefGoogle Scholar

  • [99] K. Namjou, C.B. Roller, and G. McMillen, “Breath analysis using mid infrared tunable laser spectroscopy”, Proc. 6th Ann. IEEE Conf. on Sensors, Atlanta, GA, 1337–1340 (2007). Google Scholar

  • [100] K. Heinrich, T. Fritsch, P. Hering, and M. Murtz, “Infrared laser-spectroscopic analysis of 14NO and 15NO in human breath”, Appl. Phys. B-Lasers O. 95, 281–286 (2009). http://dx.doi.org/10.1007/s00340-009-3423-1CrossrefGoogle Scholar

About the article

Published Online: 2011-12-29

Published in Print: 2012-03-01


Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-012-0011-4.

Export Citation

© 2012 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in