Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 20, Issue 1

Issues

Energy efficiency of near infrared cobalt luminscence in ZnSe:Co determined by a photoacoustic method

Ł. Chrobak
  • Department of Electronics and Computer Science, Technical University of Koszalin, 2 Śniadeckich Str, 75-453, Koszalin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Maliński
  • Department of Electronics and Computer Science, Technical University of Koszalin, 2 Śniadeckich Str, 75-453, Koszalin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. Strzałkowski / J. Zakrzewski
Published Online: 2011-12-29 | DOI: https://doi.org/10.2478/s11772-012-0013-2

Abstract

The paper presents results of computations of the energy efficiency of the cobalt luminescence in ZnSe:Co determined by the photoacoustic method. The transmission spectra, photoacoustic experimental and theoretical spectra, and the frequency dependence on the photoacoustic amplitude characteristics are presented. From them, the energy efficiency of Co2+ the near infrared luminescence (3200 nm) was computed in the frame of new proposed photoacoustic model of computations of the luminescence energy efficiency.

Keywords: semiconductors; photoacoustic effect; photoacoustic spectroscopy; non-destructive testing

  • [1] A.P. Radliński, “On the properties of cobalt impurities in zinc selenide crystals II. The optical properties in near-infrared. 4A2(4F) ↔ 4T2(4F) transitions”, Phys. Status Solidi. B86, 41–46 (1978). http://dx.doi.org/10.1002/pssb.2220860104CrossrefGoogle Scholar

  • [2] A.P. Radliński, “Infrared luminescence of cobalt impurities in II–VI compounds”, J. Lumin. 18/19, 147–150 (1979). http://dx.doi.org/10.1016/0022-2313(79)90091-7CrossrefGoogle Scholar

  • [3] A.P. Radliński, “Position of the Co2+ level in wide gap II–VI semiconductors”, J. Phys. C: Solid State. 12, 4477–4482 (1979). http://dx.doi.org/10.1088/0022-3719/12/21/015CrossrefGoogle Scholar

  • [4] Z. Burshtein, Y. Shimony, R. Feldman, V. Krupkin, A. Glushko, and E. Galun, “Excited-state absorption at 1.57 μm in U2+:CaF2 and Co2+:ZnSe saturable absorbers”, Opt. Mater. 15, 285–291 (2001). http://dx.doi.org/10.1016/S0925-3467(00)00044-6CrossrefGoogle Scholar

  • [5] A.V. Podlipensky, V.G. Shcherbitsky, N.V. Kuleshov, V.P. Mikhailov, V.I. Levchenko, and V.N. Yakimovich, “Cr2+: ZnSe and Co2+:ZnSe saturable-absorber Q switches for 1.54-μm Er:glass lasers”, Opt. Lett. 24, 960–962 (1999). http://dx.doi.org/10.1364/OL.24.000960CrossrefGoogle Scholar

  • [6] L.D. Deloach, R.H. Page, G.D. Wilke, S.A. Payne, and W.F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media”, IEEE J. Quantum Elect. 32, 885–895 (1996). http://dx.doi.org/10.1109/3.502365CrossrefGoogle Scholar

  • [7] A. Rosencwaig and A. Gersho, “Theory of acoustic effect with solids”, J. Appl. Phys. 47, 64–68 (1976). http://dx.doi.org/10.1063/1.322296CrossrefGoogle Scholar

  • [8] C.A. Benett and R.R. Patty, “Thermal wave interferometry: a potential application of the photoacoustic effect”, Appl. Opt. 21, 49–52 (1982). http://dx.doi.org/10.1364/AO.21.000049CrossrefGoogle Scholar

  • [9] M. Maliński, “Temperature distribution formulae — applications in photoacoustics”, Arch. Acoust. 27, 217–220 (2002). Google Scholar

  • [10] E. Rodriguez, J.O. Tocho, and F. Cusso, “Simultaneous multiple-wavelength photoacoustic and luminescence experiments: A method for fluorescent-quantum-efficiency determination”, Phys. Rev. B47, 14049–14053 (2000). Google Scholar

  • [11] G.A. Torchia, D. Schinca, N.M. Khaidukov, and J.O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in Cs2NaAlF6 single crystals”, Opt. Mater. 20, 301–304 (2002). http://dx.doi.org/10.1016/S0925-3467(02)00091-5CrossrefGoogle Scholar

  • [12] G.A. Torchia, J.A. Munoz, F. Cusso, F. Jague, and J.O. Tocho, “The luminescent quantum efficiency of Cr3+ ions in co-doped crystals of LiNbO3: ZnO determined by simultaneous multiple-wavelength photoacoustic and luminescence experiments”, J. Lumin. 92, 317–322 (2001) http://dx.doi.org/10.1016/S0022-2313(01)00161-2CrossrefGoogle Scholar

  • [13] M. Maliński, Ł. Chrobak, J. Zakrzewski, and K. Strzałkowski, ”Determination of the quantum efficiency of luminescence in Mn2+ ions in Zn0.75Be0.20Mn0.05Se crystals by the nondestructive photoacoustic metod”, Opt. Mater. 33, 75–78 (2010). http://dx.doi.org/10.1016/j.optmat.2010.08.012Google Scholar

  • [14] M. Maliński, “Influence of internal reflections of light on spectral characteristics of photoacoustic signal”, Opto-Electron. Rev. 18, 126–129 (2010). Web of ScienceGoogle Scholar

  • [15] F. Firszt, S. Łęgowski, H. Męczyńska, J. Szatkowski, W. Paszkowicz, and K. Godwod, “Growth and characterisation of Zn1-xBexSe mixed crystals”, J. Cryst. Growth 184, 1335–1338 (1998). http://dx.doi.org/10.1016/S0022-0248(98)80277-7CrossrefGoogle Scholar

  • [16] Ł. Chrobak and M. Maliński, “Transmission and absorption based photoacoustic methods of determination of the optical absorption spectra of Si samples — comparison”, Solid State Commun. 149, 1600–1602 (2009). http://dx.doi.org/10.1016/j.ssc.2009.06.038Web of ScienceCrossrefGoogle Scholar

  • [17] M. Maliński, and Ł. Chrobak, “Photoacousic operation modes for determination of the optical absorption spectra of SiGe mixed crystals”, Opto-Electron. Rev. 18, 19–25 (2010). Web of ScienceGoogle Scholar

  • [18] M. Maliński, and Ł. Chrobak, “Numerical analysis of absorption and transmission photoacoustic spectra of silicon samples with differently treated surfaces”, Opto-Electron. Rev. 19, 56–60 (2011). http://dx.doi.org/10.2478/s11772-010-0065-0Web of ScienceCrossrefGoogle Scholar

  • [19] M. Maliński, Ł. Chrobak, J. Zakrzewski, and K. Strzałkowski, “Photoacoustic method of determination of quantum efficiency of luminescence in Mn2+ ions in Zn1−x−yBexMnySe crystals”, Opto-Electron. Rev. 19, 183–188 (2011). http://dx.doi.org/10.2478/s11772-011-0007-5CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2011-12-29

Published in Print: 2012-03-01


Citation Information: Opto-Electronics Review, Volume 20, Issue 1, Pages 91–95, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-012-0013-2.

Export Citation

© 2012 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in