Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 20, Issue 3

Issues

Optimized K-means (OKM) clustering algorithm for image segmentation

F. Siddiqui / N. Mat Isa
Published Online: 2012-07-04 | DOI: https://doi.org/10.2478/s11772-012-0028-8

Abstract

This paper presents the optimized K-means (OKM) algorithm that can homogenously segment an image into regions of interest with the capability of avoiding the dead centre and trapped centre at local minima phenomena. Despite the fact that the previous improvements of the conventional K-means (KM) algorithm could significantly reduce or avoid the former problem, the latter problem could only be avoided by those algorithms, if an appropriate initial value is assigned to all clusters. In this study the modification on the hard membership concept as employed by the conventional KM algorithm is considered. As the process of a pixel is assigned to its associate cluster, if the pixel has equal distance to two or more adjacent cluster centres, the pixel will be assigned to the cluster with null (e. g., no members) or to the cluster with a lower fitness value. The qualitative and quantitative analyses have been performed to investigate the robustness of the proposed algorithm. It is concluded that from the experimental results, the new approach is effective to avoid dead centre and trapped centre at local minima which leads to producing better and more homogenous segmented images.

Keywords: K-means based clustering; image segmentation; dead centre problem; trapped centre problem; optimized K-means

  • [1] M.P. Segundo, L. Silva, O.R.P. Bellon, and C.C. Queirolo, “Automatic face segmentation and facial landmark detection in range images”, IEEE T. Syst. Man Cy. B40, 1319–1330 (2010). http://dx.doi.org/10.1109/TSMCB.2009.2038233CrossrefWeb of ScienceGoogle Scholar

  • [2] K. Nickel and R. Stiefelhagen, “Visual recognition of pointing gestures for human-robot interaction”, Image Vision Comput. 25, 1875–1884 (2007). http://dx.doi.org/10.1016/j.imavis.2005.12.020Web of ScienceCrossrefGoogle Scholar

  • [3] Y. Hou, Y. Yang, N. Rao, X. Lun, and J. Lan, “Mixture model and Markov random field-based remote sensing image unsupervised clustering method”, Opto-Electron. Rev. 19, 83–88 (2011). http://dx.doi.org/10.2478/s11772-010-0070-3Web of ScienceCrossrefGoogle Scholar

  • [4] S.N. Sulaiman and N.A.M. Isa, “Adaptive fuzzy-K-means clustering algorithm for image segmentation”, IEEE T. Consum. Electr. 56, 2661–2668 (2010). http://dx.doi.org/10.1109/TCE.2010.5681154Web of ScienceCrossrefGoogle Scholar

  • [5] S.N. Sulaiman and N.A.M. Isa, “Denoising-based clustering algorithms for segmentation of low level salt-and-pepper noise-corrupted images”, IEEE T. Consum. Electr. 56, 2702–2710 (2010). http://dx.doi.org/10.1109/TCE.2010.5681159Web of ScienceCrossrefGoogle Scholar

  • [6] N.A.M. Isa, “Automated edge detection technique for Pap smear images using moving k-means clustering and modified seed based region growing algorithm”, Int. J. Comput., Internet Manage. 13, 45–59 (2005). Google Scholar

  • [7] Y. Xing, Q. Chaudry, C. Shen, K.Y. Kong, H.E. Zhau, L.W. Chung, J.A. Petros, R.M. O’Regan, M.V. Yezhelyev, J.W. Simons, M.D. Wang, and S. Nie, “Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry”, Nat. Protoc. 2, 1152–1165 (2007). http://dx.doi.org/10.1038/nprot.2007.107CrossrefWeb of ScienceGoogle Scholar

  • [8] J.-W Jeong, D.C. Shin, S.H. Do, and V.Z. Marmarelis, “Segmentation methodology for automated classification and differentiation of soft tissues in multiband images of high-resolution ultrasonic transmission tomography”, IEEE T. Med. Imaging 25, 1068–1078 (2006). http://dx.doi.org/10.1109/TMI.2006.877443CrossrefGoogle Scholar

  • [9] N.A.M. Isa, M.Y. Mashor, and N.H. Othman, “An automated cervical pre-cancerous diagnostic system”, Artif. Intell. Med. 42, 1–11 (2008). http://dx.doi.org/10.1016/j.artmed.2007.09.002CrossrefWeb of ScienceGoogle Scholar

  • [10] R. Nagarajan, “Intensity-based segmentation of microarray images”, IEEE T. Med. Imaging 22, 882–889 (2003). http://dx.doi.org/10.1109/TMI.2003.815063CrossrefGoogle Scholar

  • [11] R.J. Hathaway, J.C. Bezdek, and Y. Hu, “Generalized fuzzy c-means clustering strategies using Lp norm distances”, IEEE T. Fuzzy Syst. 8, 576–582 (2002). http://dx.doi.org/10.1109/91.873580CrossrefGoogle Scholar

  • [12] M. Mashor, “Hybrid training algorithm for RBF network”, Int. J. Comput., Internet Manage. 8, 50–65 (2000). Google Scholar

  • [13] N.A.M. Isa, S.A. Salamah, and U.K. Ngah, “Adaptive fuzzy moving K-means clustering algorithm for image segmentation”, IEEE T. Consum. Electr. 55, 2145–2153 (2010). Google Scholar

  • [14] F.U. Siddiqui and N.A.M. Isa, “Enhanced moving K-means (EMKM) algorithm for image segmentation”, IEEE T. Consum. Electr. 57, 833–841 (2011). http://dx.doi.org/10.1109/TCE.2011.5955230CrossrefGoogle Scholar

  • [15] B. Leibe, K. Mikolajczyk, and B. Schiele, “Efficient clustering and matching for object class recognition”, Proc. BMVC, 789–798 (2006). Google Scholar

  • [16] L. Jianqing and Y. Yee-Hong, “Multiresolution colour image segmentation”, IEEE T. Pattern Anal. 16, 689–700 (1994). http://dx.doi.org/10.1109/34.297949CrossrefGoogle Scholar

  • [17] M. Borsotti, P. Campadelli, and R. Schettini, “Quantitative evaluation of colour image segmentation results1”, Pattern Recogn. Lett. 19, 741–747 (1998). http://dx.doi.org/10.1016/S0167-8655(98)00052-XCrossrefGoogle Scholar

About the article

Published Online: 2012-07-04

Published in Print: 2012-09-01


Citation Information: Opto-Electronics Review, Volume 20, Issue 3, Pages 216–225, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-012-0028-8.

Export Citation

© 2012 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in