Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

4 Issues per year

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 20, Issue 3 (Sep 2012)

Issues

Lenticular arrays based on liquid crystals

V. Urruchi Del Pozo
  • Grupo de Displays & Aplicaciones Fotónicas, Dept. de Tecnologia Electrónica, E.P.S., Universidad Carlos III, Butarque 15, 28911, Leganés, Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Algorri Genaro
  • Grupo de Displays & Aplicaciones Fotónicas, Dept. de Tecnologia Electrónica, E.P.S., Universidad Carlos III, Butarque 15, 28911, Leganés, Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Sánchez-Pena
  • Grupo de Displays & Aplicaciones Fotónicas, Dept. de Tecnologia Electrónica, E.P.S., Universidad Carlos III, Butarque 15, 28911, Leganés, Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Geday
  • Grupo de Cristales Liquidos, Dept. de Tecnologia Fotónica, E.T.S.I. Telecomunicación, Ciudad Universitaria s/n, 28040, Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ X. Arregui
  • Grupo de Cristales Liquidos, Dept. de Tecnologia Fotónica, E.T.S.I. Telecomunicación, Ciudad Universitaria s/n, 28040, Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ N. Bennis
  • Grupo de Cristales Liquidos, Dept. de Tecnologia Fotónica, E.T.S.I. Telecomunicación, Ciudad Universitaria s/n, 28040, Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-07-04 | DOI: https://doi.org/10.2478/s11772-012-0032-z

Abstract

Lenticular array products have experienced a growing interest in the last decade due to the very wide range of applications they can cover. Indeed, this kind of lenses can create different effects on a viewing image such as 3D, flips, zoom, etc. In this sense, lenticular based on liquid crystals (LC) technology is being developed with the aim of tuning the lens profiles simply by controlling the birefringence electrically. In this work, a LC lenticular lens array has been proposed to mimic a GRIN lenticular lens array but adding the capability of tuning their lens profiles. Comb control electrodes have been designed as pattern masks for the ITO on the upper substrate. Suitable high resistivity layers have been chosen to be deposited on the control electrode generating an electric field gradient between teeth of the same electrode. Test measurements have allowed us to demonstrate that values of phase retardations and focal lengths, for an optimal driving waveform, are fairly in agreement. In addition, results of focusing power of tuneable lenses were compared to those of conventional lenses. The behaviour of both kinds of lenses has revealed to be mutually similar for focusing collimated light and for refracting images.

Keywords: Liquid crystal lenticular array; GRIN lens; high resistivity layer; birefringence electrically controlled

  • [1] Gaebler, A. Moessinger, F. Goelden, A. Manabe, M. Goebel, R. Follmann, D. Koether, C. Modes, A. Kipka, M. Deckelmann, T. Rabe, B. Schulz, P. Kuchenbecker, A. Lapanik, S. Mueller, W. Haase, and R. Jakoby, “Liquid crystal-reconfigurable antenna concepts for space applications at microwave and millimeter waves”, Int. J. Ant. Prop. 2009, 1–7 (2009). Google Scholar

  • [2] X. Wang, T.D. Wilkinson, M. Mann, K.B.K. Teo, and W.I. Milne, “Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes”, Appl. Opt. 49, 3311–3315 (2010). http://dx.doi.org/10.1364/AO.49.003311CrossrefGoogle Scholar

  • [3] Carrasco-Vela, X. Quintana, and E. Otón, “Security devices based on liquid crystals doped with dichroic”, Proc. 7th Spanish Meeting of Optoelectronics, 2011. Google Scholar

  • [4] W.A. Crossland, T.V. Clapp, T.D. Wilkinson, I.G. Manolis, A. Georgiou, and B. Robertson, “Liquid crystals in telecommunications systems”, Mol. Cryst. Liq. Cryst. 413, 2499–2518 (2004). http://dx.doi.org/10.1080/15421400490438825CrossrefGoogle Scholar

  • [5] J. Feng, Y. Zhao, S.-S. Li, X.-W. Lin, F. Xu, and Y.-Q. Lu, “Fibre-optic pressure sensor based on tuneable liquid crystal technology”, Photonics Journal IEEE 2, 292–298 (2010). http://dx.doi.org/10.1109/JPHOT.2010.2045365CrossrefGoogle Scholar

  • [6] E. Otón, D. Poudereux, X. Quintana, J.M. Otón, and M.A. Geday, “Design, manufacturing and characterization of a liquid crystal based blaze grating for space applications”, Proc. 7th Spanish Meeting of Optoelectronics, 2011. Google Scholar

  • [7] E.J. Fernández, P.M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator”, Opt. Express 17, 11013–11025 (2009). http://dx.doi.org/10.1364/OE.17.011013CrossrefGoogle Scholar

  • [8] O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging”, J. Biomed. Opt. 16, 086008-1–086008-12 (2011). http://dx.doi.org/10.1117/1.3609003Web of ScienceGoogle Scholar

  • [9] N. Peyghambarian, G. Li, D. Mathine, and P. Valley, “Electro-optic adaptive lens as a new eyewear”, Mol. Cryst. Liq. Cryst. 454, 157–166 (2006). http://dx.doi.org/10.1080/15421400600656491CrossrefGoogle Scholar

  • [10] D.W. Berreman, “Variable-focus LC-lens system”, US Patent 4 190 330, 1980. Google Scholar

  • [11] G.E. Nevskaya and M.G. Tomilin, “Adaptive lenses based on liquid crystals”, J. Opt. Tech. 75, 563–573 (2008). http://dx.doi.org/10.1364/JOT.75.000563CrossrefGoogle Scholar

  • [12] H. Ren, Y. Fan, S. Gauza, and S. Wu, “Tuneable-focus cylindrical liquid crystal lens”, Jpn. J. Appl. Phys. 43, 652–653 (2004). http://dx.doi.org/10.1143/JJAP.43.652CrossrefGoogle Scholar

  • [13] M. Ye, B. Wang and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material”, Opt. Express 16, 4302–4308 (2008). http://dx.doi.org/10.1364/OE.16.004302CrossrefWeb of ScienceGoogle Scholar

  • [14] S. Sato, “Applications of liquid crystals to variable-focusing lenses”, Opt. Rev. 6, 471–485 (1999). http://dx.doi.org/10.1007/s10043-999-0471-zCrossrefGoogle Scholar

  • [15] G.V. Vdovin, I.R. Guralnik, O.A. Zayakin, N.A. Klimov, S.P. Kotova, M.Y. Loktev, and A.F. Naumov, “Modal liquid crystal wave-front correctors”, Bull. Russ. Acad. Sci. Phys. 72, 71–77 (2008). Google Scholar

  • [16] A.F. Naumov, M.Y. Loktev, I.R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control”, Opt. Lett. 23, 992–994 (1998). http://dx.doi.org/10.1364/OL.23.000992CrossrefGoogle Scholar

  • [17] G.D. Love and A.F. Naumov, “Modal liquid crystal lenses”, Liq. Cryst. Today 10, 1–4 (2000). http://dx.doi.org/10.1080/135831401750061465CrossrefGoogle Scholar

  • [18] S.P. Kotova, V.V. Patlan, and S.A. Samagin, “Tuneable liquid-crystal focusing device. 1. Theory”, Quantum. Electron. 41, 58–64 (2011). http://dx.doi.org/10.1070/QE2011v041n01ABEH014406Google Scholar

  • [19] N. Fraval and J.L.B. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths”, Appl. Opt. 49, 2778–2783 (2010). http://dx.doi.org/10.1364/AO.49.002778CrossrefGoogle Scholar

  • [20] P.J.W. Hands, A.K. Kirby, and G.D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143 (2004). http://dx.doi.org/10.1117/12.562359CrossrefGoogle Scholar

  • [21] E. Hecht, Optics, Addison Wesley, London, 2002. Google Scholar

  • [22] Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P.C.-P. Chao, C.-C. Tsai, and C.-N. Mo, “An auto-stereoscopic 3D display using tuneable liquid crystal lens array that mimics effects of GRIN lenticular lens array”, SID International Symposium, Dig. Tech. Pap. 111–114 (2009). CrossrefGoogle Scholar

  • [23] V. Urruchi, J.F. Algorri, J.M. Sánchez-Pena, N. Bennis, M.A. Geday, and J.M. Otón, “Electro-optic characterization of tuneable cylindrical liquid crystal lenses”, Mol. Cryst. Liq. Cryst. 553, 211–219 (2012). http://dx.doi.org/10.1080/15421406.2011.609473CrossrefGoogle Scholar

  • [24] ISO 14880-1: Optics and Photonics: Microlens Arrays Part 1, 2001. Google Scholar

  • [25] A.A. Camacho, C. Solano, M. Cywiak, G. Martínez-Ponce, and R. Baltazar, “Method for the determination of the focal length of a micro-lens” Opt. Eng. 39, 2149–2152 (2000). http://dx.doi.org/10.1117/1.1305540CrossrefGoogle Scholar

  • [26] L. Erdmann and R. Kowarschik, “Testing of refractive silicon micro-lenses by use of a lateral shearing interferometer in transmission”, Appl. Opt. 37, 676–682 (1998). http://dx.doi.org/10.1364/AO.37.000676CrossrefGoogle Scholar

  • [27] J. Liu, B.-Z. Dong, B.-Y. Gu, and G.-Z. Yang, “Entirely electromagnetic analysis of micro-lenses without a beam shaping aperture”, Appl. Opt. 40, 1686–1691 (2001). http://dx.doi.org/10.1364/AO.40.001686CrossrefGoogle Scholar

  • [28] L. Lipton, “Aperture correction for lenticular screens”, U.S. Patent no. 7808708B2 (2010). Google Scholar

About the article

Published Online: 2012-07-04

Published in Print: 2012-09-01


Citation Information: Opto-Electronics Review, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-012-0032-z.

Export Citation

© 2012 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in