Jump to ContentJump to Main Navigation
Show Summary Details

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

IMPACT FACTOR 2015: 1.611
Rank 98 out of 255 in category Electrical & Electronic Engineering and 43 out of 90 in Optics in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.624
Source Normalized Impact per Paper (SNIP) 2015: 1.387
Impact per Publication (IPP) 2015: 1.564

99,00 € / $149.00 / £75.00*

See all formats and pricing

Select Volume and Issue


Lenticular arrays based on liquid crystals

1Grupo de Displays & Aplicaciones Fotónicas, Dept. de Tecnologia Electrónica, E.P.S., Universidad Carlos III, Butarque 15, 28911, Leganés, Madrid, Spain

2Grupo de Cristales Liquidos, Dept. de Tecnologia Fotónica, E.T.S.I. Telecomunicación, Ciudad Universitaria s/n, 28040, Madrid, Spain

© 2012 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Opto-Electronics Review. Volume 20, Issue 3, Pages 260–266, ISSN (Online) 1896-3757, DOI: 10.2478/s11772-012-0032-z, July 2012

Publication History

Published Online:


Lenticular array products have experienced a growing interest in the last decade due to the very wide range of applications they can cover. Indeed, this kind of lenses can create different effects on a viewing image such as 3D, flips, zoom, etc. In this sense, lenticular based on liquid crystals (LC) technology is being developed with the aim of tuning the lens profiles simply by controlling the birefringence electrically. In this work, a LC lenticular lens array has been proposed to mimic a GRIN lenticular lens array but adding the capability of tuning their lens profiles. Comb control electrodes have been designed as pattern masks for the ITO on the upper substrate. Suitable high resistivity layers have been chosen to be deposited on the control electrode generating an electric field gradient between teeth of the same electrode. Test measurements have allowed us to demonstrate that values of phase retardations and focal lengths, for an optimal driving waveform, are fairly in agreement. In addition, results of focusing power of tuneable lenses were compared to those of conventional lenses. The behaviour of both kinds of lenses has revealed to be mutually similar for focusing collimated light and for refracting images.

Keywords: Liquid crystal lenticular array; GRIN lens; high resistivity layer; birefringence electrically controlled

  • [1] Gaebler, A. Moessinger, F. Goelden, A. Manabe, M. Goebel, R. Follmann, D. Koether, C. Modes, A. Kipka, M. Deckelmann, T. Rabe, B. Schulz, P. Kuchenbecker, A. Lapanik, S. Mueller, W. Haase, and R. Jakoby, “Liquid crystal-reconfigurable antenna concepts for space applications at microwave and millimeter waves”, Int. J. Ant. Prop. 2009, 1–7 (2009).

  • [2] X. Wang, T.D. Wilkinson, M. Mann, K.B.K. Teo, and W.I. Milne, “Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes”, Appl. Opt. 49, 3311–3315 (2010). http://dx.doi.org/10.1364/AO.49.003311 [CrossRef]

  • [3] Carrasco-Vela, X. Quintana, and E. Otón, “Security devices based on liquid crystals doped with dichroic”, Proc. 7th Spanish Meeting of Optoelectronics, 2011.

  • [4] W.A. Crossland, T.V. Clapp, T.D. Wilkinson, I.G. Manolis, A. Georgiou, and B. Robertson, “Liquid crystals in telecommunications systems”, Mol. Cryst. Liq. Cryst. 413, 2499–2518 (2004). http://dx.doi.org/10.1080/15421400490438825 [CrossRef]

  • [5] J. Feng, Y. Zhao, S.-S. Li, X.-W. Lin, F. Xu, and Y.-Q. Lu, “Fibre-optic pressure sensor based on tuneable liquid crystal technology”, Photonics Journal IEEE 2, 292–298 (2010). http://dx.doi.org/10.1109/JPHOT.2010.2045365 [CrossRef]

  • [6] E. Otón, D. Poudereux, X. Quintana, J.M. Otón, and M.A. Geday, “Design, manufacturing and characterization of a liquid crystal based blaze grating for space applications”, Proc. 7th Spanish Meeting of Optoelectronics, 2011.

  • [7] E.J. Fernández, P.M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator”, Opt. Express 17, 11013–11025 (2009). http://dx.doi.org/10.1364/OE.17.011013 [CrossRef]

  • [8] O. Aharon, I. Abdulhalim, O. Arnon, L. Rosenberg, V. Dyomin, and E. Silberstein, “Differential optical spectropolarimetric imaging system assisted by liquid crystal devices for skin imaging”, J. Biomed. Opt. 16, 086008-1–086008-12 (2011). http://dx.doi.org/10.1117/1.3609003 [Web of Science]

  • [9] N. Peyghambarian, G. Li, D. Mathine, and P. Valley, “Electro-optic adaptive lens as a new eyewear”, Mol. Cryst. Liq. Cryst. 454, 157–166 (2006). http://dx.doi.org/10.1080/15421400600656491 [CrossRef]

  • [10] D.W. Berreman, “Variable-focus LC-lens system”, US Patent 4 190 330, 1980.

  • [11] G.E. Nevskaya and M.G. Tomilin, “Adaptive lenses based on liquid crystals”, J. Opt. Tech. 75, 563–573 (2008). http://dx.doi.org/10.1364/JOT.75.000563 [CrossRef]

  • [12] H. Ren, Y. Fan, S. Gauza, and S. Wu, “Tuneable-focus cylindrical liquid crystal lens”, Jpn. J. Appl. Phys. 43, 652–653 (2004). http://dx.doi.org/10.1143/JJAP.43.652 [CrossRef]

  • [13] M. Ye, B. Wang and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material”, Opt. Express 16, 4302–4308 (2008). http://dx.doi.org/10.1364/OE.16.004302 [CrossRef] [Web of Science]

  • [14] S. Sato, “Applications of liquid crystals to variable-focusing lenses”, Opt. Rev. 6, 471–485 (1999). http://dx.doi.org/10.1007/s10043-999-0471-z [CrossRef]

  • [15] G.V. Vdovin, I.R. Guralnik, O.A. Zayakin, N.A. Klimov, S.P. Kotova, M.Y. Loktev, and A.F. Naumov, “Modal liquid crystal wave-front correctors”, Bull. Russ. Acad. Sci. Phys. 72, 71–77 (2008).

  • [16] A.F. Naumov, M.Y. Loktev, I.R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control”, Opt. Lett. 23, 992–994 (1998). http://dx.doi.org/10.1364/OL.23.000992 [CrossRef]

  • [17] G.D. Love and A.F. Naumov, “Modal liquid crystal lenses”, Liq. Cryst. Today 10, 1–4 (2000). http://dx.doi.org/10.1080/135831401750061465 [CrossRef]

  • [18] S.P. Kotova, V.V. Patlan, and S.A. Samagin, “Tuneable liquid-crystal focusing device. 1. Theory”, Quantum. Electron. 41, 58–64 (2011). http://dx.doi.org/10.1070/QE2011v041n01ABEH014406

  • [19] N. Fraval and J.L.B. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths”, Appl. Opt. 49, 2778–2783 (2010). http://dx.doi.org/10.1364/AO.49.002778 [CrossRef]

  • [20] P.J.W. Hands, A.K. Kirby, and G.D. Love, “Adaptive modally addressed liquid crystal lenses,” Proc. SPIE 5518, 136–143 (2004). http://dx.doi.org/10.1117/12.562359 [CrossRef]

  • [21] E. Hecht, Optics, Addison Wesley, London, 2002.

  • [22] Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P.C.-P. Chao, C.-C. Tsai, and C.-N. Mo, “An auto-stereoscopic 3D display using tuneable liquid crystal lens array that mimics effects of GRIN lenticular lens array”, SID International Symposium, Dig. Tech. Pap. 111–114 (2009). [CrossRef]

  • [23] V. Urruchi, J.F. Algorri, J.M. Sánchez-Pena, N. Bennis, M.A. Geday, and J.M. Otón, “Electro-optic characterization of tuneable cylindrical liquid crystal lenses”, Mol. Cryst. Liq. Cryst. 553, 211–219 (2012). http://dx.doi.org/10.1080/15421406.2011.609473 [CrossRef]

  • [24] ISO 14880-1: Optics and Photonics: Microlens Arrays Part 1, 2001.

  • [25] A.A. Camacho, C. Solano, M. Cywiak, G. Martínez-Ponce, and R. Baltazar, “Method for the determination of the focal length of a micro-lens” Opt. Eng. 39, 2149–2152 (2000). http://dx.doi.org/10.1117/1.1305540 [CrossRef]

  • [26] L. Erdmann and R. Kowarschik, “Testing of refractive silicon micro-lenses by use of a lateral shearing interferometer in transmission”, Appl. Opt. 37, 676–682 (1998). http://dx.doi.org/10.1364/AO.37.000676 [CrossRef]

  • [27] J. Liu, B.-Z. Dong, B.-Y. Gu, and G.-Z. Yang, “Entirely electromagnetic analysis of micro-lenses without a beam shaping aperture”, Appl. Opt. 40, 1686–1691 (2001). http://dx.doi.org/10.1364/AO.40.001686 [CrossRef]

  • [28] L. Lipton, “Aperture correction for lenticular screens”, U.S. Patent no. 7808708B2 (2010).

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

J. F. Algorri, G. D. Love, and V. Urruchi
Optics Express, 2013, Volume 21, Number 21, Page 24809

Comments (0)

Please log in or register to comment.