Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 20, Issue 3

Issues

Dispersion management in soft glass all-solid photonic crystal fibres

R. Buczynski
  • Institute of Electronic Materials Technology (ITME), 133 Wólczyńska Str., 01-919, Warsaw, Poland
  • Faculty of Physics, University of Warsaw, 7 Pasteura Str., 02-093, Warsaw, Poland
  • School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Pniewski / D. Pysz / R. Stepien / R. Kasztelanic / I. Kujawa / A. Filipkowski
  • Institute of Electronic Materials Technology (ITME), 133 Wólczyńska Str., 01-919, Warsaw, Poland
  • School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Waddie / M. Taghizadeh
Published Online: 2012-07-04 | DOI: https://doi.org/10.2478/s11772-012-0033-y

Abstract

The development of all-solid photonic crystal fibres for nonlinear optics is an alternative approach to air-glass solid core photonic crystal fibres. The use of soft glasses ensures a high refractive index contrast (> 0.1) and a high nonlinear coefficient of the fibres. We report on the dispersion management capabilities in all-solid photonic crystal fibres taking into account four thermally matched glasses which can be jointly processed using the stack-and-draw fibre technique. We present structures with over 450 nm broadband flat normal dispersion and ultra-flat near zero anomalous dispersion below 5 ps/nm/km over 300 nm dedicated to supercontinuum generation with 1540 nm laser sources. The development of an all-solid photonic crystal fibre made of F2 and NC21 glasses is presented. The fibre is used to demonstrate supercontinuum generation in the range of 730–870 nm (150 nm) with flatness below 5 dB.

Keywords: fibres’ dispersion; photonic crystal fibres; microstructured fibres; soft glass; supercontinuum generation

  • [1] H. Bartelt, J. Kirchhof, J. Kobelke, K. Schuster, A. Schwuchow, K. Mörl, U. Röpke, J. Leppert, H. Lehmann, S. Smolka, M. Barth, O. Benson, S. Taccheo, and C. D’Andrea, “Preparation and application of functionalized photonic crystal fibres”, Phys. Status Solidi A204, 3805–3821 (2007). Google Scholar

  • [2] R. Buczynski, D. Pysz, R. Stepien, A.J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk, and M.R. Taghizadeh, “Super-continuum generation in photonic crystal fibres with nanoporous core made of soft glass”, Laser Phys. Lett. 8, 443–448 (2011). http://dx.doi.org/10.1002/lapl.201110011CrossrefWeb of ScienceGoogle Scholar

  • [3] A.A. Ivanov, M.V. Alfimov, and A.M. Zheltikov, “Photonic-crystal-fibre solutions for ultrafast chromium forsterite laser technologies”, Laser Phys. Lett. 4, 775–780 (2007). http://dx.doi.org/10.1002/lapl.200710044Web of ScienceCrossrefGoogle Scholar

  • [4] H. Ebendorff-Heidepriem and T.M. Monro, “Soft glass micro-structured optical fibres: Recent progress in fabrication and opportunities for novel optical devices”, in 11th Int. Conf. on Transparent Optical Networks, pp. 1–4, Azores, 2009. Google Scholar

  • [5] D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, and D. Velic, “Nonlinear refractive index of multicomponent glasses designed for fabrication of photonic crystal fibres”, Appl. Phys. B-Lasers O. 93, 531–538 (2008). http://dx.doi.org/10.1007/s00340-008-3217-xCrossrefWeb of ScienceGoogle Scholar

  • [6] V.L. Kalashnikov, E. Sorokin, and I.T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs”, Appl. Phys. B-Laser O. 87, 37–44 (2007). http://dx.doi.org/10.1007/s00340-006-2545-yCrossrefGoogle Scholar

  • [7] R. Buczynski, H.T. Bookey, D. Pysz, R. Stepien, I. Kujawa, J.E. McCarthy, A.J. Waddie, A.K. Kar, and M.R. Taghizadeh, “Supercontinuum generation up to 2.5 um in photonic crystal fibre made of lead-bismuth-gallate glass”, Laser Phys. Lett. 7, 666–672 (2010). http://dx.doi.org/10.1002/lapl.201010039CrossrefGoogle Scholar

  • [8] R. Buczynski, D. Pysz, T. Martynkien, D. Lorenc, I. Kujawa, T. Nasilowski, F. Berghmans, H. Thienpont, and R. Stepien, “Ultra flat supercontinuum generation in silicate dual core microstructured fibre”, Laser Phys. Lett. 6, 575–581 (2009). http://dx.doi.org/10.1002/lapl.200810143CrossrefGoogle Scholar

  • [9] V.L. Kalashnikov, E. Sorokin, S. Naumov, I.T. Sorokina, V.V. Ravi Kanth Kumar, and A.K. George, “Low-threshold supercontinuum generation from an extruded SF6 PCF using a compact Cr4+:YAG laser”, Appl. Phys. B-Laser O. 79, 591–596 (2004). http://dx.doi.org/10.1007/s00340-004-1593-4Google Scholar

  • [10] X. Feng, T. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fibre”, Opt. Express 11, 2225–2230 (2003). http://dx.doi.org/10.1364/OE.11.002225CrossrefGoogle Scholar

  • [11] F. Luan, A.K. George, T.D. Hedley, G.J. Pearce, D.M. Bird, J.C. Knight, and P.St.J. Russell, “All-solid photonic bandgap fibre”, Opt. Lett. 29, 2369–2371 (2004). http://dx.doi.org/10.1364/OL.29.002369CrossrefGoogle Scholar

  • [12] A. Argyros, T. Birks, S. Leon-Saval, C.M. Cordeiro, F. Luan, and P.St.J. Russell, “Photonic bandgap with an index step of one percent”, Opt. Express 13, 309–314 (2005). http://dx.doi.org/10.1364/OPEX.13.000309CrossrefGoogle Scholar

  • [13] G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all solid 2D photonic bandgap fibre with a low-loss region (< 20 dB/km) around 1550 nm”, Opt. Express 13, 8452–8459 (2005). http://dx.doi.org/10.1364/OPEX.13.008452Google Scholar

  • [14] G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fibre”, Opt. Lett. 32, 1023–1025, (2007). http://dx.doi.org/10.1364/OL.32.001023CrossrefGoogle Scholar

  • [15] J. Fini, “Design of solid and microstructure fibres for suppression of higher-order modes,” Opt. Express 13, 3477–3490 (2005). http://dx.doi.org/10.1364/OPEX.13.003477CrossrefGoogle Scholar

  • [16] M.-Y. Chen, “All-solid silica-based photonic crystal fibres”, Opt. Commun. 266, 151–158 (2006). http://dx.doi.org/10.1016/j.optcom.2006.04.019CrossrefGoogle Scholar

  • [17] F. Poletti, X. Feng, G.M. Ponzo, M.N. Petrovich, W.H. Loh, and D.J. Richardson, “All-solid highly nonlinear singlemode fibres with a tailored dispersion profile”, Opt. Express 19, 66–80 (2011). http://dx.doi.org/10.1364/OE.19.000066CrossrefGoogle Scholar

  • [18] Camerlingo, X. Feng, F. Poletti, G. Ponzo, F. Parmigiani, P. Horak, M. Petrovich, P. Petropoulos, W. Loh, and D. Richardson, “Near-zero dispersion, highly nonlinear leadsilicate W-type fibre for applications at 1.55 μm”, Opt. Express 18, 15747–15756 (2010). http://dx.doi.org/10.1364/OE.18.015747Google Scholar

  • [19] X. Feng, T.M. Monro, P. Petropoulos, V. Finazzi, and D.J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fibre with high index-contrast for highly nonlinear optical devices”, Appl. Phys. Lett. 87, 1–3 (2005). Google Scholar

  • [20] X. Feng, F. Poletti, A. Camerlingo, F. Parmigiani, P. Horak, P. Petropoulos, W.H. Loh, and D.J. Richardson, “Dispersion-shifted all-solid high index-contrast microstructured optical fibre for nonlinear applications at 1.55μm”, Opt. Express 17, 20249–20255 (2009). http://dx.doi.org/10.1364/OE.17.020249Google Scholar

  • [21] S. Ghosh, R.K. Varshney, B.P. Pal, and G. Monnom. “A Bragg-like chirped clad all-solid microstructured optical fibre with ultra-wide bandwidth for short pulse delivery and pulse reshaping”, Opt. Quant. Electronics 42, 1–14 (2010). http://dx.doi.org/10.1007/s11082-010-9417-8CrossrefWeb of ScienceGoogle Scholar

  • [22] A. Wang, A. George, J. Liu, and J. Knight, “Highly biref-ringent lamellar core fibre”, Opt. Express 13, 5988–5993 (2005). http://dx.doi.org/10.1364/OPEX.13.005988CrossrefGoogle Scholar

  • [23] B. Kibler, T. Martynkien, M. Szpulak, C. Finot, J. Fatome, J. Wojcik, W. Urbanczyk, and S. Wabnitz, “Nonlinear femto-second pulse propagation in an all-solid photonic bandgap fibre”, Opt. Express 17, 10393–10398 (2009). http://dx.doi.org/10.1364/OE.17.010393CrossrefGoogle Scholar

  • [24] A.M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibres”, J. Opt. Soc. Am. B27, 550–559 (2010). Web of ScienceCrossrefGoogle Scholar

  • [25] J.M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fibre”, Rev. Mod. Phys. 78, 1135–1184 (2006). http://dx.doi.org/10.1103/RevModPhys.78.1135CrossrefGoogle Scholar

  • [26] R.W. Pryor, Multiphysics Modelling Using COMSOL A First Principles Approach, Jones and Bartlett Publishers, Sadbury, 2011. Google Scholar

  • [27] M. Bache, H. Nielsen, J. Laegsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibres for zero group-velocity mismatch”, Opt. Lett. 31, 1612–1614 (2006). http://dx.doi.org/10.1364/OL.31.001612CrossrefGoogle Scholar

  • [28] Supercontinuum Generation in Optical Fibre, edited by J.M. Dudley and J.R. Taylor, Cambridge University Press, 2010. Google Scholar

  • [29] Optical glass data sheets, http://www.schott.com/advanced?_optics/english/. Google Scholar

  • [30] D. Lorenc, I. Bugar, M. Aranyosiova, R. Buczynski, D. Pysz, D. Velic, and D. Chorvat, “Linear and nonlinear properties of multicomponent glass photonic crystal fibres,” Laser Phys. 18(3), 270–276 (2008). http://dx.doi.org/10.1134/S1054660X08030134CrossrefGoogle Scholar

About the article

Published Online: 2012-07-04

Published in Print: 2012-09-01


Citation Information: Opto-Electronics Review, Volume 20, Issue 3, Pages 207–215, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-012-0033-y.

Export Citation

© 2012 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in