Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 21, Issue 2


Thermal management of GaInNAs/GaAs VECSELs

A. Sokół / R. Sarzała
Published Online: 2013-03-15 | DOI: https://doi.org/10.2478/s11772-013-0081-y


Different methods used to reduce temperature increase within the active region of vertical-external-cavity surface-emitting lasers (VECSELs) are described and compared with the aid of the self-consistent thermal finite-element method. Simulations have been carried out for the GaInNAs/GaAs multiple-quantum-well (MQW) VECSEL operating at room temperature at 1.31 μm. Main results are presented in form of ‘thermal maps’ which can be simply used to determine maximal temperature of different structures at specified pumping conditions. It has been found that these maps are also appropriate for some other GaAs-based VECSELs and can be very helpful especially during structure designing. Moreover, convective and thermal radiation heat transfer from laser walls has been investigated.

Keywords: thermal management; VECSEL; semiconductor disk laser; SDL; GaInNAs; InGaAs

  • [1] M. Kuznetsov, “VECSEL semiconductor lasers: a path to high-power, quality beam and UV to IR wavelength by design”, in Semiconductor Disk Lasers: Physics and Technology, pp. 1–71, edited by Wiley-VCH Verlag, Weinheim, 2010. http://dx.doi.org/10.1002/9783527630394.ch1CrossrefGoogle Scholar

  • [2] W. Nakwaski, “VCSEL structures used to suppress higher-order transverse modes”, Opto-Electron. Rev. 19, 119–129 (2011). http://dx.doi.org/10.2478/s11772-010-0075-yWeb of ScienceCrossrefGoogle Scholar

  • [3] H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength inp-based semiconductor disk lasers”, IEEE J. Sel. Top. Quantum Electron. 11, 1126–1134 (2005). http://dx.doi.org/10.1109/JSTQE.2005.853730CrossrefGoogle Scholar

  • [4] P. Millar, R.B. Birch, A.J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers”, IEEE J. Quantum Electron. 44, 709–717 (2008). http://dx.doi.org/10.1109/JQE.2008.923424CrossrefWeb of ScienceGoogle Scholar

  • [5] A.J. Kemp, J.-M. Hopkins, A.J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis”, IEEE J. Quantum Electron. 44, 125–135 (2008). http://dx.doi.org/10.1109/JQE.2007.911673CrossrefGoogle Scholar

  • [6] A.J. Maclean, A.J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M.D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader”, IEEE J. Quantum Electron. 44, 216–225 (2008). http://dx.doi.org/10.1109/JQE.2007.911704Web of ScienceCrossrefGoogle Scholar

  • [7] A.J. Kemp, G.J. Valentine, J.-M. Hopkins, J.E. Hastie, S.A. Smith, S. Calvez, M.D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach”, IEEE J. Quantum Electron. 41, 148–155 (2005). http://dx.doi.org/10.1109/JQE.2004.839706CrossrefGoogle Scholar

  • [8] A.J. Maclean, A.J. Kemp, and D. Burns, “Power-scaling of a 1060 nm semiconductor disk laser with a diamond heat-spreader”, in CLEO/QELS 2008, pp. 1–2, San Jose, 2008. Google Scholar

  • [9] A.J. Kemp, A.J. Maclean, J.E. Hasties, A. Smith, J.-M. Hopkins, S. Calvez, G.J. Valentinem, D. Dawson, and D. Burns, “Thermal lensing, thermal management and transverse mode control in microchip VECSELs”, Appl. Phys. B83, 189–194 (2006). http://dx.doi.org/10.1007/s00340-006-2151-zCrossrefGoogle Scholar

  • [10] J.-M. Hopkins, S.A. Smith, C.W. Jeon, H.D. Sun, D. Burns, S. Calvez, M.D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm”, Electron. Lett. 40, 30–31 (2004). http://dx.doi.org/10.1049/el:20040049Google Scholar

  • [11] S.A. Smith, J.-M. Hopkins, J.E. Hastie, D. Burns, S. Calvez, M.D. Dawson, T. Jouhti, J. Kontinnen, and M. Pessa, “Diamond-microchip GaInNAs vertical external-cavity surface-emitting laser operating CW at 1315nm”, Electron. Lett. 40, 935–936 (2004). http://dx.doi.org/10.1049/el:20045378CrossrefGoogle Scholar

  • [12] J. Lau and W. Dauksher, “Thermal stress analysis of a flip-chip parallel VCSEL (Vertical-Cavity Surface-Emitting Laser) package with low-temperature lead-free (48Sn-52In) solder joints”, in Proc. of 56th Electronic Components and Technology Conf., pp. 9–17, San Diego, 2006. Google Scholar

  • [13] K. Lee, K. Kim, and J.J. Yoh, “Modelling of high energy laser ignition of energetic materials”, J. Appl. Phys. 103, 083536-6 (2008). Google Scholar

  • [14] J.T. Cook, Y.K. Joshi, R. Doraiswami, “Interconnect thermal management of high power packaged electronic architectures”, in Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symp., pp. 30–37, San Jose, 2004. Google Scholar

  • [15] J. Peirs, D. Reynaerts, and H. Van Brussel, “Scale effects and thermal considerations for microactuators”, in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1516–1521, Leuven, 1998. Google Scholar

  • [16] A. Amith, I. Kudman, and E.F. Steigmeier, “Electron and phonon scattering in GaAs at high temperature”, Phys. Rev. 138, A1270–A1276 (1965). http://dx.doi.org/10.1103/PhysRev.138.A1270CrossrefGoogle Scholar

  • [17] S. Adachi, “GaAs, AlAs, and AlxGa1−x As: Materials parameters for use in research and device applications”, J. Appl. Phys. 58, R1–R29 (1985). http://dx.doi.org/10.1063/1.336070Google Scholar

  • [18] W. Nakwaski, “Thermal conductivity binary, ternary, and quaternary III-V compounds”, J. Appl. Phys. 64, 159–166 (1988). http://dx.doi.org/10.1063/1.341449CrossrefGoogle Scholar

About the article

Published Online: 2013-03-15

Published in Print: 2013-06-01

Citation Information: Opto-Electronics Review, Volume 21, Issue 2, Pages 191–198, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-013-0081-y.

Export Citation

© 2013 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in