Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 21, Issue 2

Issues

TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering

M. Mazur
  • Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, 11/17 Janiszewskiego, 50-372, Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Wojcieszak
  • Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, 11/17 Janiszewskiego, 50-372, Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Domaradzki
  • Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, 11/17 Janiszewskiego, 50-372, Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Kaczmarek
  • Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, 11/17 Janiszewskiego, 50-372, Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Song
  • University of the West of Scotland, High Street, Paisley, PA1 2BE, UK
  • Scottish Universities Physics Alliance, University Ave., G128QQ, Glasgow, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ F. Placido
  • University of the West of Scotland, High Street, Paisley, PA1 2BE, UK
  • Scottish Universities Physics Alliance, University Ave., G128QQ, Glasgow, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-03-15 | DOI: https://doi.org/10.2478/s11772-013-0085-7

Abstract

In this paper designing, preparation and characterization of multifunctional coatings based on TiO2/SiO2 has been described. TiO2 was used as a high index material, whereas SiO2 was used as a low index material. Multilayers were deposited on microscope slide substrates by microwave assisted reactive magnetron sputtering process. Multilayer design was optimized for residual reflection of about 3% in visible spectrum (450–800 nm). As a top layer, TiO2 with a fixed thickness of 10 nm as a protective film was deposited. Based on transmittance and reflectance spectra, refractive indexes of TiO2 and SiO2 single layers were calculated. Ultra high vacuum atomic force microscope was used to characterize the surface properties of TiO2/SiO2 multilayer. Surface morphology revealed densely packed structure with grains of about 30 nm in size. Prepared samples were also investigated by nanoindentation to evaluate their protective performance against external hazards. Therefore, the hardness of the thin films was measured and it was equal to 9.34 GPa. Additionally, contact angle of prepared coatings has been measured to assess the wetting properties of the multilayer surface.

Keywords: TiO2; optical coating; hardness; wettability; magnetron sputtering

  • [1] M. Giotia, S. Logothetidis, C. Charitidis, Y. Panayiotatos, and I. Varsano, “On the properties and functionality of ultra-thin diamond related protective coatings used in optical systems”, Sensor Actuat. A-Phys 99, 35–40 (2002). http://dx.doi.org/10.1016/S0924-4247(01)00887-1CrossrefGoogle Scholar

  • [2] M. Asghar, M. Shoaib, F. Placido, and S. Naseem, “Wide bandpass optical filters with TiO2 and Ta2O5”, Cent. Eur. J. Phys. 6, 853–863 (2008). http://dx.doi.org/10.2478/s11534-008-0104-3CrossrefWeb of ScienceGoogle Scholar

  • [3] J. Han, Y. Dou, M. Wei, D. G. Evans, and X. Duan, “Antireflection/antifogging coatings based on nanoporous films derived from layered double hydroxide”, Chem. Eng. J. 169, 371–378 (2011). http://dx.doi.org/10.1016/j.cej.2011.02.070Web of ScienceCrossrefGoogle Scholar

  • [4] S.Y. Lien, D.S. Wuu, W.C. Yeh, and J.C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2) for silicon solar cells using a sol-gel technique”, Sol. Energ. Mat. Sol. C90, 2710–2719 (2006). http://dx.doi.org/10.1016/j.solmat.2006.04.001CrossrefGoogle Scholar

  • [5] N.Y. Kim, Y.B. Son, J.H. Oh, C.K. Hwangbo, and M.C. Park, “TiN layer as an antireflection and antistatic coating for display”, Surf. Coat. Tech. 128–129, 156–160 (2000). http://dx.doi.org/10.1016/S0257-8972(00)00574-0CrossrefGoogle Scholar

  • [6] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapour deposition for antireflection coating”, J. Non-Cryst. Solids 216, 77–82 (1997). http://dx.doi.org/10.1016/S0022-3093(97)00175-0CrossrefGoogle Scholar

  • [7] M.H. Asghar, F. Placido, and S. Naseem, “Reactively evaporated multilayer antireflection coatings for Ge optical window”, J. Phys. D — Appl. Phys. 40, 2065–2070 (2007). http://dx.doi.org/10.1088/0022-3727/40/7/031Web of ScienceCrossrefGoogle Scholar

  • [8] M.H. Asghar, F. Placido, and S. Naseem, “Characterization of reactively evaporated TiO2 thin films as high and medium index layers for optical applications”, Eur. Phys. J. Appl. Phys. 35, 177–184 (2006). http://dx.doi.org/10.1051/epjap:2006087CrossrefGoogle Scholar

  • [9] A. Rothschild, F. Edelman, Y. Komem, and F. Cosandey, “Sensing behaviour of TiO2 thin films exposed to air at low temperatures”, Sensor. Actuat. B-Chem. 67, 282–289 (2000). http://dx.doi.org/10.1016/S0925-4005(00)00523-2CrossrefGoogle Scholar

  • [10] S. Boyadzhiev, V. Georgieval, and M. Rassovska, “Characterization of reactive sputtered TiO2 thin films for gas sensor applications”, J. Phys. Conf. Ser. 253, 012040 (2010). http://dx.doi.org/10.1088/1742-6596/253/1/012040CrossrefGoogle Scholar

  • [11] M. Kaito, Y. Oshima, and K. Uraba, “Preparation and electrochromism of RF-sputtered TiO2 films”, Jpn. J. App. Phys. 36, 4423 (1997). http://dx.doi.org/10.1143/JJAP.36.4423CrossrefGoogle Scholar

  • [12] M. Qi, K. Itoh, M. Murabayash, and C.R. Lavers, “Characterization and application of a channel-planar composite waveguide”, Opt. Lett. 25, 1427–1429 (2000). http://dx.doi.org/10.1364/OL.25.001427CrossrefGoogle Scholar

  • [13] L.J. Meng and F. Placido, “Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications”, Surf. Coat. Tech. 166, 44–50 (2003). http://dx.doi.org/10.1016/S0257-8972(02)00767-3CrossrefGoogle Scholar

  • [14] I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A.M. Baro, “WSXM: A soft-ware for scanning probe microscopy and a tool for nanotechnology”, Rev. Sci. Instrum. 78, 013705 (2007). http://dx.doi.org/10.1063/1.2432410CrossrefGoogle Scholar

  • [15] D.Y. Kwok and A.W. Neumann, “Contact angle measurement and contact angle interpretation”, Adv. Colloid. Interfac. 81, 167–249 (1999). http://dx.doi.org/10.1016/S0001-8686(98)00087-6CrossrefGoogle Scholar

  • [16] W.C. Oliver and G.M. Pharr, “A new improved technique for determining hardness and elastic modulus using load and sensing indentation experiments”, J. Mater. Res. 7, 1564–1582 (1992). http://dx.doi.org/10.1557/JMR.1992.1564CrossrefGoogle Scholar

  • [17] M.F. Doerner and W.D. Nix, “A method for interpreting the data depth-sensing indentation instruments”, J. Mater. Res. 1, 601–609 (1986). http://dx.doi.org/10.1557/JMR.1986.0601CrossrefGoogle Scholar

  • [18] U. Beck, D.T. Smith, G. Reiners, and S.J. Dapkunas, “Mechanical properties of SiO2 and Si3N4 coatings: a BAM/NIST co-operative project”, Thin Solid Films 332, 164–171 (1998). http://dx.doi.org/10.1016/S0040-6090(98)00989-4CrossrefGoogle Scholar

  • [19] S. Mathur and P. Kuhn, “CVD of titanium oxide coatings: Comparative evaluation of thermal and plasma assisted processes”, Surf. Coat. Tech. 201, 807–814 (2006). http://dx.doi.org/10.1016/j.surfcoat.2005.12.039CrossrefGoogle Scholar

  • [20] M.D. Michel, A. Mikowski, C.M. Lepienski, C.E. Foerster, and F.C. Serbena, “High temperature microhardness of soda—lime glass”, J. Non-Cryst. Solids 348, 131–138 (2004). http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.138CrossrefGoogle Scholar

  • [21] E. Sharfrin and W.A. Zisman, “Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers”, J. Phys. Chem. 64, 519–524 (1960). http://dx.doi.org/10.1021/j100834a002CrossrefGoogle Scholar

About the article

Published Online: 2013-03-15

Published in Print: 2013-06-01


Citation Information: Opto-Electronics Review, Volume 21, Issue 2, Pages 233–238, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-013-0085-7.

Export Citation

© 2013 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in