Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 21, Issue 2


Electrical properties of HgCdTe films grown by MOCVD and doped with as

I. Izhnin / H. Savytskyy / O. Fitsych / J. Piotrowski / K. Mynbaev
Published Online: 2013-03-15 | DOI: https://doi.org/10.2478/s11772-013-0086-6


Electrical properties of HgCdTe films grown by metal-organic chemical vapour deposition (MOCVD) on GaAs substrates and doped with the As acceptor during the growth were studied. Discrete mobility spectrum analysis was used to extract the parameters of the as-grown films and films after ion milling and during prolonged relaxation of milling-induced defects. The measurements revealed significant compensation of the as-grown MOCVD HgCdTe with As on Te sites being the main defect, residual donor concentration of the order of (2–5)×1015 cm−3, and the presence of some unidentified defects.

Keywords: MOCVD; HgCdTe; As doping; electrical properties

  • [1] C.D. Maxey, “Metal-Organic Vapor Phase Epitaxy (MOVPE) growth”, in Mercury Cadmium Telluride: Growth, Properties and Applications, pp. 113–129, edited by P. Capper and J.W. Garland, Wiley series in materials for electronic and optoelectronic applications, edited by S. Kasap, P. Capper and A. Willoughby, John Wiley & Sons, Chichester, 2011. Google Scholar

  • [2] P. Capper, “Narrow-bandgap II-VI semiconductors: growth”, in Springer Handbook Of Electronic and Photonic Materials, part B: Growth and Characterization, pp. 303–324, edited by S. Kasap and P. Capper, Springer-Verlag, New York, 2007. Google Scholar

  • [3] M. Kinch, “HgCdTe: recent trends in the ultimate IR semiconductor”, J. Electron. Mater. 39, 1043–1052 (2010). http://dx.doi.org/10.1007/s11664-010-1087-6CrossrefGoogle Scholar

  • [4] P. Madejczyk, A. Piotrowski, K. Kłos, W. Gawron, J. Rutkowski, and A. Rogalski, “Control of acceptor doping in MOCVD HgCdTe epilayers”, Opto-Electron. Rev. 18, 271–276 (2010). http://dx.doi.org/10.2478/s11772-010-1023-xCrossrefGoogle Scholar

  • [5] P. Madejczyk, W. Gawron, A. Piotrowski, K. Kłos, J. Rutkowski, and A. Rogalski, “Improvement in performance of high-operating temperature HgCdTe photodiodes”, Infr. Phys. Technol. 54, 310–315 (2011). http://dx.doi.org/10.1016/j.infrared.2010.12.036CrossrefGoogle Scholar

  • [6] P. Madejczyk, A. Piotrowski, W. Gawron, K. Kłos, J. Pawluczyk, J. Rutkowski, J. Piotrowski, and A. Rogalski, “Growth and properties of MOCVD HgCdTe epilayers on GaAs substrates”, Opto-Electron. Rev. 13, 239–251 (2005). Google Scholar

  • [7] C.D. Maxey, J.C. Fitzmaurice, H.W. Lau, L.G. Hipwood, C.S. Shaw, C.L. Jones, and P. Capper, “Current status of large-area MOVPE growth of HgCdTe device heterostructures for infrared focal plane arrays”, J. Electron. Mater. 35, 1275–1282 (2006). http://dx.doi.org/10.1007/s11664-006-0254-2CrossrefGoogle Scholar

  • [8] P. Mitra, F.C. Case, M.B. Reine, R. Starr, and M.H. Weiler, “Doping in MOVPE of HgCdTe: orientation effects and growth of high performance IR photodiodes”, J. Cryst. Growth 170, 542–548 (1997). Google Scholar

  • [9] I.M. Baker and C.D. Maxey, “Summary of HgCdTe 2D technology in the U.K.”, J. Electron. Mater. 30, 682–689 (2000). http://dx.doi.org/10.1007/BF02665856CrossrefGoogle Scholar

  • [10] I.I. Izhnin, I.A. Denisov, N.A. Smirnova, M. Pociask, and K.D. Mynbaev, “Ion-milling assisted study of defect structure of HgCdTe films grown by liquid phase epitaxy”, Opto-Electron. Rev. 18, 328–331 (2010). http://dx.doi.org/10.2478/s11772-010-1016-9CrossrefWeb of ScienceGoogle Scholar

  • [11] M. Pociask, I.I. Izhnin, E.S. Ilyina, S.A. Dvoretsky, N.N. Mikhailov, Yu.G. Sidorov, V.S. Varavin, and K.D. Mynbaev, “Study of the defect structure of Hg1−xCdxTe films by ion milling”, Acta Phys. Polon. 114, 1191–1199 (2008). Google Scholar

  • [12] J. Antoszewski, G.A. Umana-Membreno, and L. Faraone, “High-resolution mobility spectrum analysis of multicarrier transport in advanced infrared materials”, J. Electron. Mater. 41, 2816–2823 (2012). http://dx.doi.org/10.1007/s11664-012-1978-9CrossrefWeb of ScienceGoogle Scholar

  • [13] W.A. Beck and J.R. Anderson, “Determination of electrical transport properties using a novel magnetic field dependent Hall technique”, J. Appl. Phys. 62, 541–554 (1987). http://dx.doi.org/10.1063/1.339780CrossrefGoogle Scholar

  • [14] M. Carmody, D. Edwall, J. Ellsworth, J. Arias, M. Groenert, R. Jacobs, L.A. Almeida, J.H. Dinan, Y. Chen, G. Brill, and N.K. Dhar, “Role of dislocation scattering on the electron mobility of n-type long wave length infrared HgCdTe on silicon”, J. Electron. Mater. 36, 1098–1105 (2007). http://dx.doi.org/10.1007/s11664-007-0182-9CrossrefWeb of ScienceGoogle Scholar

  • [15] I.I. Izhnin, K.D. Mynbaev, M. Pociask, R.Ya. Mudryy, A.V. Voitsekhovskii, and N.Kh. Talipov, “Long-term room-temperature relaxation of the defects induced in (Hg,Cd)Te by low-energy ions”, Physica B404, 5025–5027 (2009). Google Scholar

  • [16] V.V. Bogoboyashchyy, I.I. Izhnin, K.D. Mynbaev, M. Pociask, and A.P. Vlasov, “Relaxation of electrical properties of n-type layers formed by ion milling in epitaxial HgCdTe doped with V-group acceptors”, Semicond. Sci. Technol. 21, 1144–1149 (2006). http://dx.doi.org/10.1088/0268-1242/21/8/028CrossrefGoogle Scholar

  • [17] E. Belas, R. Grill, J. Franc, P. Moravec, R. Varghová, P. Höschl, and H. Sitter,, “Dynamics of native point defects in H2 and Ar plasma-etched narrow gap (HgCd)Te”, J. Cryst. Growth 224, 52–58 (2001). http://dx.doi.org/10.1016/S0022-0248(01)00855-7Google Scholar

  • [18] E. Belas, V.V. Bogoboyashchii, R. Grill, I.I. Izhnin, A.P. Vlasov, and V.A. Yudenkov, “Time relaxation of points defects in p- and n-(HgCd)Te after ion beam milling”, J. Electron. Mater. 32, 698–702 (2003). http://dx.doi.org/10.1007/s11664-003-0055-9CrossrefGoogle Scholar

  • [19] I.I. Izhnin, A.I. Izhnin, H.V. Savytskyy, M.M. Vakiv, Y.M. Stakhira, O.E. Fitsych, M.V. Yakushev, A.V. Sorochkin, I.V. Sabinina, S.A. Dvoretsky, Yu.G. Sidorov, V.S. Varavin, M. Pociask-Bialy, and K.D. Mynbaev, “Defect structure of HgCdTe films grown by molecular beam epitaxy on Si sub-strates”, Semicond. Sci. Technol. 27, 035001 (2012). http://dx.doi.org/10.1088/0268-1242/27/3/035001CrossrefGoogle Scholar

  • [20] I.I. Izhnin, S.A. Dvoretsky, K.D. Mynbaev, N.N. Mikhailov, Yu.G. Sidorov, V.S. Varavin, R. Jakiela, M. Pociask, and G. Savitsky, “Arsenic incorporation in MBE-grown HgCdTe studied with the use of ion milling”, Phys. Stat. Sol. C7, 1618–1621 (2010). Google Scholar

  • [21] I. Izhnin, V. Bogoboyashchyy, A. Kotkov, A. Moiseev, and N. Grishnova, “Type conductivity conversion in MOCVD CdxHg1−xTe/GaAs hetero-structures under ion milling”, Proc. SPIE 5957, 595716 (2005). http://dx.doi.org/10.1117/12.622113CrossrefGoogle Scholar

About the article

Published Online: 2013-03-15

Published in Print: 2013-06-01

Citation Information: Opto-Electronics Review, Volume 21, Issue 2, Pages 220–226, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-013-0086-6.

Export Citation

© 2013 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in