Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 21, Issue 2

Issues

Luminescence and structural properties of thermally evaporated benzanthrone dyes thin films

A. Bulanovs / G. Kirilov / M. Fleisher / E. Kirilova / I. Mihailova
Published Online: 2013-03-15 | DOI: https://doi.org/10.2478/s11772-013-0087-5

Abstract

We report optical and luminescence properties of 3-N, N-diacetylaminobenzanthrone thin films deposited on glass substrate by thermal evaporation. The structural and optical properties of organic thin films were studied by means of the confocal microscope with an input of femtosecond laser radiation, X-ray diffractometer, and scanning electron microscope (SEM). Intense luminescence with the maximum at 530 nm was observed when excited by laser radiation with the wavelengths 458, 476, 488, 496, 514 nm. In addition, the luminescence caused by two-photon absorption of femtosecond (fs) laser radiation has been investigated. Semi empirical calculations by AM1 and ZINDO/S methods and ab initio calculations using Gaussian software were carried out to estimate the electron system of structure. The calculations show planar configurations for the aromatic core and diacetylamino fragment of this compound. The study of the structure of benzanthrone derivative thin films with X-ray diffraction (XRD) methods, indicates the distance between molecular layers and ordered molecular fragments.

Keywords: Benzanthrone dyes; organic thin films; solid-state luminescence

  • [1] J. Kalinowski, “Optical materials for organic light-emitting devices”, Opt. Mater. 30, 792–799 (2008). http://dx.doi.org/10.1016/j.optmat.2007.02.041CrossrefGoogle Scholar

  • [2] N. Koch, “Organic electronic devices and their functional interfaces”, Chem. Phys. Chem. 8, 1438–1455 (2007). http://dx.doi.org/10.1002/cphc.200700177CrossrefGoogle Scholar

  • [3] L.S. Hung and C.H. Chen, “Recent progress of molecular organic electroluminescent materials and devices”, Mater. Sci. Eng. R39, 143–222 (2002). Google Scholar

  • [4] L.D. Carlos, R.A.S. Ferreira, and V. de Zea Bermudez, “Hybrid materials for optical applications”, in: Synthesis, Characterization and Applications, edited by G. Kickelbick, Hybrid Materials, Wiley-VCH, pp. 337–398, Weinheim, 2007. Google Scholar

  • [5] E. Kirilova, S. Belyakov, G. Kirilov, I. Kalnina, and V. Gerbreder, “Luminescent properties and crystal structure of novel benzanthrone dyes”, J. Lumin. 129, 1827–1830 (2009). http://dx.doi.org/10.1016/j.jlumin.2009.02.024CrossrefGoogle Scholar

  • [6] M.J.S. Dewar, E.G. Zoebisch, E.F Healy, and J.J.P. Stewart, “AM1: a new general purpose. Quantum mechanical molecular model”, J. Am. Chem. Soc. 107, 3902–3909 (1985). http://dx.doi.org/10.1021/ja00299a024CrossrefGoogle Scholar

  • [7] J. Ridley and M. Zerner, “An intermediate neglect of differential overlap technique for spectroscopy: pyrrole and the azines”, Theor. Chim. Acta 32, 111 (1973). http://dx.doi.org/10.1007/BF00528484CrossrefGoogle Scholar

  • [8] R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford, 1989. Google Scholar

  • [9] B. Siddlingeshwar, S.M. Hanagodimath, E.M. Kirilova, and G.K. Kirilov, “Photophysical characteristics of three novel benzanthrone derivatives: Experimental and theoretical estimation of dipole moment”, J. Quant. Spectrosc. Radiat. Transfer 112, 448–456 (2011). http://dx.doi.org/10.1016/j.jqsrt.2010.09.001CrossrefWeb of ScienceGoogle Scholar

  • [10] P. Bentley, J.F. McKellar, and G.O. Phillips, “The photochemistry of benz[de]anthracen-7-ones. Part I. Electronic absorption and emission spectroscopy”, J. Chem. Soc. Perkin Trans. 2, 523 (1974). Google Scholar

  • [11] R.N. Nurmukhametov, “The electronic absorption and luminescence spectra of n-hetero-aromatic compounds and their derivatives”, Russian Chem. Rev. 36, 693 (1967). http://dx.doi.org/10.1070/RC1967v036n09ABEH001683CrossrefGoogle Scholar

  • [12] P. Kapusta, O. Machalicky, R. Hrdina, M. Nepras, M.B. Zimmt, and V. Fidler, “Photophysics of 3-substituted benzanthrones: substituent and solvent control of intersystem crossing”, J. Phys. Chem. A107, 9740 (2003). http://dx.doi.org/10.1021/jp035610aCrossrefGoogle Scholar

  • [13] S. Liu, K.S. Lin, V. Churikov, Y.Z. Su, J.T. Lin, T.H. Huang, and C.C. Hsu, “Two-photon absorption properties of star—shaped molecules containing peripheral diarylthienylamines”, Chem. Phys. Lett. 390, 433–439 (2004) http://dx.doi.org/10.1016/j.cplett.2004.03.050CrossrefGoogle Scholar

  • [14] E.M Kirilova, S.V Belyakov, and I. Kalnina, “Synthesis and study of N,N-substituted 3-amidinobenzanthrones”, in: Topics in Chemistry & Material Science, edited by G. Vayssilov and R. Nikolova, Heron Press, 3, pp. 19–28, Sofia, 2009. Google Scholar

About the article

Published Online: 2013-03-15

Published in Print: 2013-06-01


Citation Information: Opto-Electronics Review, Volume 21, Issue 2, Pages 227–232, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-013-0087-5.

Export Citation

© 2013 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in