Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 21, Issue 2


HOT infrared photodetectors

P. Martyniuk / A. Rogalski
Published Online: 2013-03-15 | DOI: https://doi.org/10.2478/s11772-013-0090-x


At present, uncooled thermal detector focal plane arrays are successfully used in staring thermal imagers. However, the performance of thermal detectors is modest, they suffer from slow response and they are not very useful in applications requiring multispectral detection.

Infrared (IR) photon detectors are typically operated at cryogenic temperatures to decrease the noise of the detector arising from various mechanisms associated with the narrow band gap. There are considerable efforts to decrease system cost, size, weight, and power consumption to increase the operating temperature in so-called high-operating-temperature (HOT) detectors. Initial efforts were concentrated on photoconductors and photoelectromagnetic detectors. Next, several ways to achieve HOT detector operation have been elaborated including non-equilibrium detector design with Auger suppression and optical immersion. Recently, a new strategies used to achieve HOT detectors include barrier structures such as nBn, material improvement to lower generation-recombination leakage mechanisms, alternate materials such as superlattices and cascade infrared devices. Another method to reduce detector’s dark current is reducing volume of detector material via a concept of photon trapping detector.

In this paper, a number of concepts to improve performance of photon detectors operating at near room temperature are presented. Mostly three types of detector materials are considered — HgCdTe and InAsSb ternary alloys, and type-II InAs/GaSb superlattice. Recently, advanced heterojunction photovoltaic detectors have been developed. Novel HOT detector designs, so called interband cascade infrared detectors, have emerged as competitors of HgCdTe photodetectors.

Keywords: HOT detectors; HgCdTe photodetectors; type-II InAs/GaSb superlattice photodetectors; Sb-based III–V photodetectors; photon trapping detectors; cascade infrared detectors

  • [1] J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors,” Infrared Physics & Technol. 46, 115–131 (2004). http://dx.doi.org/10.1016/j.infrared.2004.03.016CrossrefGoogle Scholar

  • [2] J. Piotrowski and A. Rogalski, High-Operating Temperature Infrared Photodetectors, SPIE Press, Bellingham, 2007. http://dx.doi.org/10.1117/3.717228CrossrefGoogle Scholar

  • [3] J. Piotrowski and A. Piotrowski, ”Room temperature IR photodetectors,” in Mercury Cadmium Telluride. Growth, Properties and Applications, edited by P. Capper and J. Garland, pp. 513–537, Wiley, West Sussex, 2011. Google Scholar

  • [4] A. Rogalski, Infrared Detectors, CRC Press, Boca Raton, 2011. Google Scholar

  • [5] J. Piotrowski and A. Rogalski, ”Photoelectromagnetic, magnetoconcentration and Dember infrared detectors” in Narrow-Gap II–VI Compounds and Electromagnetic Applications, pp. 506–525, edited by P. Capper, Chapman & Hall, London, 1997. http://dx.doi.org/10.1007/978-1-4613-1109-6_18CrossrefGoogle Scholar

  • [6] C.T. Elliott and N.T. Gordon, “Infrared detectors”, in Hand- book on Semiconductors, Vol. 4, pp. 841–936, edited by C. Hilsum, North-Holland, Amsterdam (1993). Google Scholar

  • [7] C.T. Elliott, “Non-equilibrium mode of operation of narrow-gap semiconductor devices”, Semicond. Sci. Technol. 5, S30–S37 (1990). http://dx.doi.org/10.1088/0268-1242/5/3S/008CrossrefGoogle Scholar

  • [8] T. Elliott, “New infrared and other applications of narrow gap semiconductors,” Proc. SPIE 3436, 763–775 (1998). http://dx.doi.org/10.1117/12.328075CrossrefGoogle Scholar

  • [9] Z. Djuric and J. Piotrowski, “Infrared photodetector with electromagnetic carrier depletion,” Opt. Eng. 31, 1955–1960 (1992). http://dx.doi.org/10.1117/12.59973CrossrefGoogle Scholar

  • [10] J. Piotrowski, W. Gawron, and Z. Djuric, “New generation of near-room-temperature photodetectors”, Opt. Eng. 33, 1413–1421 (1994). http://dx.doi.org/10.1117/12.165795CrossrefGoogle Scholar

  • [11] C.T. Elliott, “Photoconductive and non-equilibrium devices in HgCdTe and related alloys,” in Infrared Detectors and Emitters: Materials and Devices, pp. 279–312, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2001. http://dx.doi.org/10.1007/978-1-4615-1607-1_11CrossrefGoogle Scholar

  • [12] J. Piotrowski and A. Rogalski, “Comment on “Temperature limits on infrared detectivities of InAs/InxGa1−xSb superlltices and bulk Hg1−xCdxTe” [J. Appl. Phys. 74, 4774 (1993)]”, J. Appl. Phys. 80, 2542–2544 (1996). http://dx.doi.org/10.1063/1.363043Google Scholar

  • [13] J. Piotrowski and W. Gawron. “Ultimate performance of infrared photodetectors and figure of merit of detector material”, Infrared Physics and Technol. 38, 63–68 (1997). http://dx.doi.org/10.1016/S1350-4495(96)00030-8CrossrefGoogle Scholar

  • [14] http://www.vigo.com.pl/ Google Scholar

  • [15] http://www.vigo.com.pl/index.php/en/content/download/2411/10089/file/catalogue%20512.pdf Google Scholar

  • [16] A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, J. Rutkowski, J. Piotrowski, A. Rogalski, “Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors”, Infrared Physics & Technol. 49, 173–182 (2007). http://dx.doi.org/10.1016/j.infrared.2006.06.026CrossrefGoogle Scholar

  • [17] P. Madejczyk, W. Gawron, A. Piotrowski, K. Kłos, J. Rutkowski, and A. Rogalski, ”Improvement in performance of high-operating temperature HgCdTe photodiodes”, Infrared Physics & Technol. 54, 310–315 (2011). http://dx.doi.org/10.1016/j.infrared.2010.12.036CrossrefGoogle Scholar

  • [18] J.D. Kim and M. Razeghi, “Investigation of InAsSb infrared photodetectors for near-room temperature operatio”, Opto—Electron. Rev. 6, 217–230 (1998). Google Scholar

  • [19] H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel, “Uncooled atmospheric window InAs-GaSb type-II infrared detectors grown on GaAs substrates for the 8–12 μm”, IEEE J. Quantum Electron. 35, 1041–1044 (1999). http://dx.doi.org/10.1109/3.772173CrossrefGoogle Scholar

  • [20] P.W. Kruse, “Indium antimonide photoelectromagnetic infrared detector,” J. Appl. Phys. 30, 770–778 (1959). http://dx.doi.org/10.1063/1.1735230CrossrefGoogle Scholar

  • [21] E. Michel and M. Razeghi, ”Recent advances in Sb-based materials for uncooled infrared photodetectors”, Opt.-Electr. Rev. 6, 11–23 (1998). Google Scholar

  • [22] E.G. Camargo, K. Ueno, T. Morishita, M. Sato, H. Endo, M. Kurihara, K. Ishibashi, and M. Kuze, “High-sensitivity temperature measurement with miniaturized InSb mid-IR sensor”, IEEE Sensors J. 7, 1335–1339 (2007). http://dx.doi.org/10.1109/JSEN.2007.902948CrossrefGoogle Scholar

  • [23] M. Kuze, T. Morishita, E.G. Camargo, K. Ueno, A. Yokoyama, M. Sato, H. Endo, Y. Yanagita, S. Toktuo, and H. Goto, “Development of uncooled miniaturized InSb Photo-voltaic infrared sensors for temperature measurements”, J. Crystal Growth 311, 1889–1892 (2009). http://dx.doi.org/10.1016/j.jcrysgro.2008.10.106CrossrefGoogle Scholar

  • [24] A. Rogalski, “InAs1−xSbx infrared detectors,” Prog. Quantum Electron. 13, 191–231 (1989). http://dx.doi.org/10.1016/0079-6727(89)90003-7CrossrefGoogle Scholar

  • [25] P. Knowles, L. Hipwood, N. Shorrocks, I. M. Baker, L. Pillans, P. Abbott, R. Ash, and J. Harji, “Status of IR detectors for high operating temperature produced by MOVPE growth of MCT on GaAs substrates”, Proc. SPIE 8541, 854108 (2012). doi:10.1117/12.971431. http://dx.doi.org/10.1117/12.971431CrossrefGoogle Scholar

  • [26] L. Pillans, R.M. Ash, L. Hipwood, and P. Knowles, ”MWIR mercury cadmium telluride detectors for high operating temperatures”, Proc. SPIE 8353, 83532W (2012). http://dx.doi.org/10.1117/12.919015Google Scholar

  • [27] R. DeWames and J. Pellegrino, “Electrical characteristics of MOVPE grown MWIR N+p(As) HgCdTe hetero-structure photodiodes build on GaAs substrates”, Proc. SPIE 8353, 83532P (2012). http://dx.doi.org/10.1117/12.921093Google Scholar

  • [28] J.G.A. Wehner, E.P.G. Smith, G.M. Venzor, K.D. Smith, A.M. Ramirez, B.P. Kolasa, K.R. Olsson, and M.F. Vilela, “HgCdTe photon trapping structure for broadband mid-wavelength infra- red absorption”, J. Electron. Mater. 40, 1840–1846 (2011). http://dx.doi.org/10.1007/s11664-011-1703-0CrossrefGoogle Scholar

  • [29] K.D. Smith, J.G.A. Wehner, R.W. Graham, J.E. Randolph, A.M. Ramirez, G.M. Venzor, K. Olsson, M.F. Vilela, and E.P.G Smith, “High operating temperature mid-wavelength infrared HgCdTe photon trapping focal plane arrays”, Proc. SPIE 8353, 83532R (2012). http://dx.doi.org/10.1117/12.921480Google Scholar

  • [30] D.A.G. Bruggeman, ”Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen”, Ann. Phys. (Leipzig) 24, 636–679 (1935). CrossrefGoogle Scholar

  • [31] K.T. Posani, V. Tripathi, S. Annamalai, S. Krishna, R. Perahia, O. Crisafulli, and O. Painter, ”Quantum dot photonic crystal detectors”, Proc. SPIE 6129, 612906-1–8 (2006). Google Scholar

  • [32] S. Krishna, K.T. Posani, V. Tripathi, S. Annamalai, R. Perahia, O. Crisafulli, and O. Painter, “Quantum dot infrared sensors with photonic crystal cavity”, Proc. Laser & Electro-optical Society, Vol. 1, pp. 909–910, 2005. Google Scholar

  • [33] N.K. Dhar and R. Dat, “Advanced imaging research and development at DARPA”, Proc. SPIE 8353, 835302 (2012). http://dx.doi.org/10.1117/12.923682CrossrefGoogle Scholar

  • [34] A.I. D’Souza, E. Robinson, A.C. Ionescu, D. Okerlund, T.J. de Lyon, R.D. Rajavel, H. Sharifi, D. Yap, N. Dhar, P.S. Wijewarnasuriya, and C. Grein, “MWIR InAs1−xSbx nCBn detectors data and analysis”, Proc. SPIE 8353, 835333 (2012). http://dx.doi.org/10.1117/12.920495CrossrefGoogle Scholar

  • [35] S. Maimon and G.W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature”, Appl. Phys. Lett. 89, 151109 (2006). http://dx.doi.org/10.1063/1.2360235CrossrefGoogle Scholar

  • [36] D.Z.-Y. Ting, A. Soibel, L. Höglund, J. Nguyen, C.J. Hill, A. Khoshakhlagh, and S.D. Gunapala,, “Type-II superlattice infrared detectors”, in Semiconductors and Semimetals, Vol. 84, pp. 1–57, edited by S.D. Gunapala, D.R. Rhiger, and C. Jagadish, Elsevier, Amsterdam, 2011. http://dx.doi.org/10.1016/B978-0-12-381337-4.00001-2CrossrefGoogle Scholar

  • [37] A.M. Itsuno, J.D. Philips, and S. Velicu, “Design and modelling of HgCdTe nBn detectors”, J. Elect. Mater. 40, 1624–1629 (2011). http://dx.doi.org/10.1007/s11664-011-1614-0CrossrefGoogle Scholar

  • [38] P. Klipstein, “XBn’ barrier photodetectors for high sensitivity and high operating temperature infrared sensors”, Proc. SPIE. 6940, 69402U-1–11 (2008). Google Scholar

  • [39] D.Z. Ting, C.J. Hill, A. Soibel, J. Nguyen, S.A. Keo, M.C. Lee, J.M. Mumolo, J.K. Liu, and S.D. Gunapala, “Antimonide-based barrier infrared detectors”, Proc. SPIE 7660, 76601R-1–12 (2010). Google Scholar

  • [40] P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, A. Glozman, T. Fishman, E. Berkowicz, O. Magen, I. Shtrichman, and E. Weiss, “Bn barrier photodetectors based on InAsSb with high operating temperatures”, Opt. Eng. 50, 061002-1–10 (2011). http://dx.doi.org/10.1117/1.3572149CrossrefGoogle Scholar

  • [41] J.B. Rodriguez, E. Plis, G. Bishop, Y.D. Sharma, H. Kim, L.R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices”, Appl. Phys. Lett. 91, 043514-1–2 (2007). CrossrefGoogle Scholar

  • [42] B.-M. Nguyen, S. Bogdanov, S.A. Pour, and M. Razeghi, “Minority electron unipolar photodetectors based on type II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection”, Appl. Phys. Lett. 95, 183502-1–3 (2009). CrossrefGoogle Scholar

  • [43] A.D. Hood, A.J. Evans, A. Ikhlassi, D.L. Lee, and W.E. Tennant, “LWIR strained-layer superlattice materials and devices at Teledyne Imaging Sensors”, J. Electron. Mater. 39, 1001–1006 (2010). http://dx.doi.org/10.1007/s11664-010-1091-xCrossrefGoogle Scholar

  • [44] D.Z.-Y. Ting, C.J. Hill, A. Soibel, S.A. Keo, J.M. Mumolo, J. Nguyen, and S.D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector”, Appl. Phys. Lett. 95, 023508-1–3 (2009). http://dx.doi.org/10.1063/1.3177333CrossrefGoogle Scholar

  • [45] E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs”, J. Crystal Growth 339, 31–35 (2012). http://dx.doi.org/10.1016/j.jcrysgro.2011.11.076CrossrefGoogle Scholar

  • [46] P. Maryniuk and A. Rogalski, ”Modelling of InAsSb/AlAsSb nBn HOT detector’s performance limit”, to be published. Google Scholar

  • [47] W.E. Tennant, D. Lee, M. Zandian, E. PiQuette, and M. Carmody, “MBE HgCdTe technology: A very general solution to IR detection, described by ”Rule07”, a very convenient heuristic”, J. Electron. Mater. 37, 1406–1410 (2008). http://dx.doi.org/10.1007/s11664-008-0426-3CrossrefGoogle Scholar

  • [48] S. Velicu, J. Zhao, M. Morley, A.M. Itsuno, and J.D. Philips, ”Theoretical and experimental investigation of MWIR HgCdTe nBn detectors”, Proc. SPIE 8268, 82682X (2012). http://dx.doi.org/10.1117/12.904916Google Scholar

  • [49] P. Martyniuk and A. Rogalski, “Modelling of MWIR HgCdTe complementary barrier HOT detector”, Solid-State Electron. 80, 96–104 (2013). http://dx.doi.org/10.1016/j.sse.2012.10.021CrossrefGoogle Scholar

  • [50] P. Martyniuk and A. Rogalski, “Theoretical modelling of MWIR thermoelectrically cooled nBn HgCdTe detector”, to be published in Bull. Pol. Ac.: Tech. Google Scholar

  • [51] P. Martyniuk, J. Wrobel, E. Plis, P. Madejczyk, A. Kowalewski, W. Gawron, S. Krishna, and A. Rogalski, “Performance modeling of MWIR InAs/GaSb/B-Al0.2Ga0.8Sb type-II superlattice nBn detector”, Semicond. Sci. Technol. 27, 055002 (2012). http://dx.doi.org/10.1088/0268-1242/27/5/055002Google Scholar

  • [52] P. Martyniuk, J. Wróbel, E. Plis, P. Madejczyk, W. Gawron, A. Kowalewski, S. Krishna, and A. Rogalski, “Modelling of mid wavelength infrared InAs/GaSb type II superlattice detectors”, Opt. Eng. 52, 061307-1–12 (2013). http://dx.doi.org/10.1117/1.OE.52.6.061307CrossrefGoogle Scholar

  • [53] A. Gomez, M. Carras, A. Nedelcu, E. Costard, X. Marcadet, V. Berger, ”Advantages of quantum cascade detectors”, Proc. SPIE 6900, 69000J-1–14 (2008). Google Scholar

  • [54] F.R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Köhler, H.E. Beere, D.A. Ritchie, E. Linfield, A.G. Davies, Y. Fedoryshyn, H. Jäckel, M. Fischer, J. Faist, and D. Hofstetter, “Quantum cascade detectors”, IEEE J. Quantum Electron. 45, 1039–1052 (2009) http://dx.doi.org/10.1109/JQE.2009.2017929CrossrefGoogle Scholar

  • [55] D. Hofstetter, F.R. Giorgetta, E. Baumann, Q. Yang, C. Manz, and K. Köhler,, “Mid-infrared quantum cascade detectors for applications in spectroscopy and pyrometry”, Appl. Phys. B 100, 313–320 (2010). http://dx.doi.org/10.1007/s00340-010-3965-2CrossrefGoogle Scholar

  • [56] A. Buffaz, M. Carras, L. Doyennette, A. Nedelcu, P. Bois, and V. Berger, “State of the art of quantum cascade photo- detectors”, Proc. SPIE 7660, 76603Q-1–10 (2010). Google Scholar

  • [57] A. Buffaz, A. Gomez, M. Carras, L. Doyennette, and V. Berger, ”Role of subband occupancy on electronic transport in quantum cascade detectors”, Phys. Rev. B 81, 075304-1–8 (2010). Google Scholar

  • [58] H. Schneider and H.C. Liu, Quantum Well Infrared Photodetectors, Springer, Berlin, 2007. Google Scholar

  • [59] J.V. Li, R.Q. Yang, C.J. Hill, and S.L. Chung, “Interbad cascade detectors with room temperature photovoltaic operation”, Appl. Phys. Lett. 86, 101102-1–3 (2005). CrossrefGoogle Scholar

  • [60] R.Q. Yang, Z. Tian, Z. Cai, J.F. Klem, M.B. Johnson, and H.C. Liu, “Interband-cascade infrared photodetectors with super-lattice absorbers”, J. Appl. Phys. 107, 054514-1–6 (2010). CrossrefGoogle Scholar

  • [61] Z. Tian, R.T. Hinkey, R.Q. Yang, D. Lubyshev, Y. Qiu, J.M. Fastenau, W.K. Liu, and M.B. Johnson, “Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers”, J. Appl. Phys. 111, 024510-1–6 (2012). CrossrefGoogle Scholar

  • [62] N. Gautam, S. Myers, A.V. Barve, B. Klein, E.P. Smith, D.R. Rhiger, L.R. Dawson, and S. Krishna, “High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice”, Appl. Phys. Lett. 101, 021106-1–4 (2012). CrossrefGoogle Scholar

  • [63] N. Gautam, “Unipolar barrier strained layer superlattice infra- red photodiodes: physics and barrier engineering”, Dissertation, The University of New Mexico, Albuquerque, 2012. Google Scholar

About the article

Published Online: 2013-03-15

Published in Print: 2013-06-01

Citation Information: Opto-Electronics Review, Volume 21, Issue 2, Pages 239–257, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-013-0090-x.

Export Citation

© 2013 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in