Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 21, Issue 4


Hybrid photonics structures with grating and prism couplers based on ZnO waveguides

P. Struk
  • Department of Optoelectronics at Faculty of Electrical Engineering, Silesian University of Technology, 2A Akademicka Str., 44-100, Gliwice, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Pustelny
  • Department of Optoelectronics at Faculty of Electrical Engineering, Silesian University of Technology, 2A Akademicka Str., 44-100, Gliwice, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. Gołaszewska / E. Kamińska / M. Borysiewicz / M. Ekielski / A. Piotrowska
Published Online: 2013-09-28 | DOI: https://doi.org/10.2478/s11772-013-0102-x


This paper presents the results of investigations concerning input-output systems of an electromagnetic wave in the visible and near visible spectrum for their application in structures of integrated optics. The input-output structures used in described planar optical waveguides are in a form of prism and grating couplers. The first part of the paper contains numerical analysis of grating couplers aiming at an optimization of their geometrical parameters, strictly — the depth of the grooves in the grating coupler. The second part presents the practical realization, as well as experimental tests of the planar optical waveguide with the hybrid input-output system. As the input system of the electromagnetic wave, a prism coupler was used, and in the case of the output system — a photonic structure with grating coupler was applied. The investigated planar wave guides with the input-output structures were made of a wide energy band gap semiconductor — zinc oxide (ZnO).

Keywords: Photonic structures; grating coupler; prism coupler; optical hybrid structures; zinc oxide waveguide

  • [1] R.G. Hunsperger, Integrated Optics Theory and Technology, Springer, 6th edition, 2009. Google Scholar

  • [2] P. Struk, T. Pustelny, K. Gołaszewska, E. Kaminska, M. Borysiewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO”, Opto-Electron. Rev. 19, 462–467 (2011). http://dx.doi.org/10.2478/s11772-011-0046-yWeb of ScienceCrossrefGoogle Scholar

  • [3] Y. Shih, An Introduction to Quantum Optics, CRC Press, New York, 2010. Google Scholar

  • [4] K. Barczak, T. Pustelny, Z. Zycki, and T. Blazejczak, “Optical fibre magnetic field sensors for monitoring of the state of work of electric motors”, Acta Phys. Pol. A116, 250–253 (2009). Google Scholar

  • [5] K. Gut and K. Nowak, “Determination of the attenuation of planar waveguides by means of detecting scattered light”, Eur. Phys. J. 154, 89–92 (2008). Google Scholar

  • [6] R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler” Appl. Opt. 32, 2901–2908 (1993). http://dx.doi.org/10.1364/AO.32.002901CrossrefGoogle Scholar

  • [7] W. Lukosz, V. Briguet, and J. Kramer, “External grating couplers on planar waveguides: Linear and nonlinear coupling and optical bistability” Opt. Commun. 69, 121–127 (1988). http://dx.doi.org/10.1016/0030-4018(88)90296-9CrossrefGoogle Scholar

  • [8] P. Struk, T. Pustelny, and Z. Opilski, “Researches on the spectral transmittance of zinc oxide ZnO semiconductor layers”, Acta Phys. Pol. A118, 1239–1241 (2010). Google Scholar

  • [9] M.A. Borysiewicz, I. Pasternak, E. Dynowska, R. Jakieła, V. Kolkovski, A. Duzynska, E. Kaminska, and A. Piotrowska, “ZnO thin films of high crystalline quality deposited on sapphire and GaN substrates by high temperature sputtering” Acta Phys. Pol. A119 686–688 (2011). Google Scholar

  • [10] Ch. Jagadish and S. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures, Elsevier, London, 2006. Google Scholar

  • [11] M. Urbanczyk, E. Maciak, K. Gut, T. Pustelny, and W. Jakubik, “Layered thin films nanostructures of Pd/WO 3-x as resistance gas sensors”, Bulletin of the Polish Academy of Sciences: Technical Sciences 59, 401–407 (2011). http://dx.doi.org/10.2478/v10175-011-0048-4CrossrefWeb of ScienceGoogle Scholar

  • [12] G.l. Duveneck, M.A. Bopp, M. Ehrat, M. Haiml, U. Keller, M.A. Bader, G. Marowsky, and S. Soria, “Evanescent-field-induced two-photon fluorescence: excitation of macroscopic areas of planar waveguides”, Appl. Phys. B73, 869–871 (2001). http://dx.doi.org/10.1007/s003400100773CrossrefGoogle Scholar

  • [13] S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, and A.C. Panday, “Photoluminescence and photoconductive characteristics of hydrothermally synthesized ZnO nanoparticles”, Opto-Electron. Rev. 18, 467–473 (2010). http://dx.doi.org/10.2478/s11772-010-0037-4CrossrefWeb of ScienceGoogle Scholar

  • [14] P. Struk and T. Pustelny, “Design and numerical analyses of the planar grating coupler”, Bulletin of the Polish Academy of Sciences: Technical Sciences 58, 509–512 (2010). http://dx.doi.org/10.2478/v10175-010-0050-2CrossrefGoogle Scholar

  • [15] D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic Waveguides”, Jpn. J. Appl. Phys., 6071–6077 (2006). Google Scholar

  • [16] K. Barczak, T. Pustelny, D. Dorosz, and J. Dorosz, “Polarization maintaining fibres for application in magnetic field measurements”, Eur. Phys. J.: Special Topics 154, 11–14 (2008). http://dx.doi.org/10.1140/epjst/e2008-00509-2CrossrefGoogle Scholar

  • [17] T. Pustelny and M. Grabka, “Numerical investigation of photonic-crystal fibres with suspended core”, Acta Phys. Pol. A116, 385–388 (2009). Google Scholar

  • [18] P.V Lambeck, “Integrated optical sensors for the chemical domain”, Meas. Sci. Technol. 17, R93–R116 (2006). http://dx.doi.org/10.1088/0957-0233/17/8/R01CrossrefGoogle Scholar

  • [19] P. Struk, T. Pustelny, B. Pustelny, K. Gołaszewska, E. Kaminska, A. Piotrowska, M. Borysiewicz, and M. Ekielski, “Zinc Oxide semiconductor for photonics structures applications”, Acta Phys. Pol. A118, 1242–1245 (2010). Google Scholar

  • [20] E. Maciak, Z. Opilski, T. Pustelny, and M. Bednorz, “An optical detection NH3 gas by means of a-WO3 thin films based on SPR technique”, J. Phys. IV: JP 129, 121–124 (2005). Google Scholar

  • [21] D. Clerc and W. Lukosz, “Direct immunosensing with an integrated-optical output grating coupler”, Sensor Actuator. Chem. 40, 53–58 (1997). http://dx.doi.org/10.1016/S0925-4005(97)80199-2CrossrefGoogle Scholar

About the article

Published Online: 2013-09-28

Published in Print: 2013-12-01

Citation Information: Opto-Electronics Review, Volume 21, Issue 4, Pages 376–381, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-013-0102-x.

Export Citation

© 2013 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in