Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 21, Issue 4

Issues

Engineering the point spread function of layered metamaterials

A. Pastuszczak / M. Stolarek / R. Kotyński
Published Online: 2013-09-28 | DOI: https://doi.org/10.2478/s11772-013-0106-6

Abstract

Layered metal-dielectric metamaterials have filtering properties both in the frequency domain and in the spatial frequency domain. Engineering their spatial filtering response is a way of designing structures with specific diffraction properties for such applications as sub-diffraction imaging, supercollimation, or optical signal processing at the nanoscale. In this paper we review the recent progress in this field.

We also present a numerical optimization framework for layered metamaterials, based on the use of evolutionary algorithms. A measure of similarity obtained using Hölder’s inequality is adapted to construct the overall criterion function. We analyse the influence of surface roughness on the quality of imaging.

Keywords: optical metamaterials; linear isoplanatic systems; point spread function engineering

  • [1] J.B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966–3969 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.3966CrossrefGoogle Scholar

  • [2] S.A. Ramakrishna, J.B. Pendry, D. Schurig, D.R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens”, J. Mod. Optics 49, 1747–1762 (2002). http://dx.doi.org/10.1080/09500340110120950CrossrefGoogle Scholar

  • [3] N. Fang, H. Lee, C. Sun, and X. Zhang. “Sub-diffraction-limited optical imaging with a silver superlens”, Science, 308: 534–537 (2005). http://dx.doi.org/10.1126/science.1108759CrossrefGoogle Scholar

  • [4] D.O. Melville and R. J. Blaikie. “Super-resolution imaging through a planar silver layer”, Opt. Express 13, 2127–2134 (2005). http://dx.doi.org/10.1364/OPEX.13.002127CrossrefGoogle Scholar

  • [5] J.W. Goodman, Introduction to Fourier Optics, Roberts & Co Publ., 3rd ed., Englewood, Colorado, 2005. Google Scholar

  • [6] P. Yeh, Optical Waves in Layered Media, J. Wiley & Sons, New York, 2005. Google Scholar

  • [7] M.J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps”, Appl. Phys. Lett. 72, 1676 (1998). http://dx.doi.org/10.1063/1.121150CrossrefGoogle Scholar

  • [8] N.D. Mattiucci, G. D’Aguanno, M. Scalora, M.J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: Application to super-resolution”, Opt. Express 17, 17517–17529 (2009). http://dx.doi.org/10.1364/OE.17.017517CrossrefGoogle Scholar

  • [9] A. Wood, J.B. Pendry, and D. P. Tsai, “Directed subwave-length imaging using a layered metal-dielectric system”, Phys. Rev. B74, 115116 (2006). http://dx.doi.org/10.1103/PhysRevB.74.115116CrossrefGoogle Scholar

  • [10] R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal-dielectric multilayers”, Opto-Electron. Rev. 18, 366–375 (2010). http://dx.doi.org/10.2478/s11772-010-0044-5Web of ScienceCrossrefGoogle Scholar

  • [11] C. Guclu, S. Campione, and F. Capolino, “Hyperbolic meta-material as super absorber for scattered fields generated at its surface”, Phys. Rev. B86, 205130 (2012). http://dx.doi.org/10.1103/PhysRevB.86.205130Web of ScienceCrossrefGoogle Scholar

  • [12] P.A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime”, Phys. Rev. B73, 113110 (2006). http://dx.doi.org/10.1103/PhysRevB.73.113110CrossrefGoogle Scholar

  • [13] X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007). http://dx.doi.org/10.1103/PhysRevB.75.045103Web of ScienceCrossrefGoogle Scholar

  • [14] R. Kotyński, T. Stefaniuk, and A. Pastuszczak, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers”, Appl. Phys. A103, 905–909 (2011). http://dx.doi.org/10.1007/s00339-011-6286-3Web of ScienceCrossrefGoogle Scholar

  • [15] M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, and J. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks”, Opt. Express 15, 508–523 (2007). http://dx.doi.org/10.1364/OE.15.000508CrossrefWeb of ScienceGoogle Scholar

  • [16] D. de Ceglia, M.A. Vincenti, M.G. Cappeddu, M. Centini, N. Akozbek, A. D’razio, J. Haus, M.J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges”, Phys. Rev. A77, 033848 (2008). http://dx.doi.org/10.1103/PhysRevA.77.033848Web of ScienceCrossrefGoogle Scholar

  • [17] A.M. Conforti, M. Guasoni, and C.D. Angelis, “Subwavelength diffraction management”, Opt. Lett. 33, 2662 (2008). http://dx.doi.org/10.1364/OL.33.002662CrossrefGoogle Scholar

  • [18] J. Wang, H. Yuan Dong, K. Hung Fung, T. Jun Cui, and N. X. Fang, “Subwavelength image manipulation through an oblique layered system”, Opt. Express 19, 16809–1682 (2011). http://dx.doi.org/10.1364/OE.19.016809Web of ScienceCrossrefGoogle Scholar

  • [19] C.J. Zapata-Rodriguez, D. Pastor, M.T. Caballero, and J.J. Miret, “Diffraction-managed superlensing using plasmonic lattices”, Opt. Comm. 285, 3358–3362 (2012). http://dx.doi.org/10.1016/j.optcom.2012.04.011CrossrefGoogle Scholar

  • [20] O. Kidwai, S.V. Zhukovsky, and J.E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations”, Phys. Rev. A85, 053842 (2012). http://dx.doi.org/10.1103/PhysRevA.85.053842CrossrefWeb of ScienceGoogle Scholar

  • [21] Z. Jacob, L.V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit”, Opt. Express 14, 8247–8256 (2006). http://dx.doi.org/10.1364/OE.14.008247CrossrefGoogle Scholar

  • [22] G. Castaldi, S. Savoia, V. Galdi, A. Alu, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs”, Phys. Rev. B86, 115123 (2012). http://dx.doi.org/10.1103/PhysRevB.86.115123Web of ScienceCrossrefGoogle Scholar

  • [23] D.C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N.A. Kuhta, and W.D. Goodhue, V.A. Podolskiy, and D. Wasserman, “Funneling Light through a subwavelength aperture with epsilon-near-zero materials”, Phys. Rev. Lett. 107, 133901 (2011). http://dx.doi.org/10.1103/PhysRevLett.107.133901Web of ScienceCrossrefGoogle Scholar

  • [24] D. S. Filonov, A.P. Slobozhanyuk, P.A. Belov, and Y.S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking”, Phys. Status Solidi RRL 6, 46–48 (2012). http://dx.doi.org/10.1002/pssr.201105475CrossrefWeb of ScienceGoogle Scholar

  • [25] R. Kotyński, T.J. Antosiewicz, K. Król, and K. Panajotov, “Two-dimensional point spread matrix of layered metal-dielectric imaging elements”, J. Opt. Soc. Am. A28, 111–117 (2011). http://dx.doi.org/10.1364/JOSAA.28.000111CrossrefGoogle Scholar

  • [26] D. Schurig and D.R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors”, Appl. Phys. Lett. 82, 2215–2217 (2003). http://dx.doi.org/10.1063/1.1562344CrossrefGoogle Scholar

  • [27] R. Kotynski and K. Chałasińska-Macukow, “Normalization of correlation filters based on the Hölder’s inequality”, Proc. SPIE. 3490, pp. 195–198, doi: 10.1117/12.308920 (1998). http://dx.doi.org/10.1117/12.308920CrossrefGoogle Scholar

  • [28] P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972). http://dx.doi.org/10.1103/PhysRevB.6.4370CrossrefGoogle Scholar

  • [29] A. Palik (editor), Handbook of Optical Constants of Solids, Academic Press, Orlando, 1998. Google Scholar

  • [30] A. Pastuszczak and R. Kotyński, “Optimised low-loss multi-layers for imaging with sub-wavelength resolution in the visible wavelength range”, J. Appl. Phys. 109, 084302 (2011). http://dx.doi.org/10.1063/1.3573479CrossrefGoogle Scholar

  • [31] A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-soft-ware package for electromagnetic simulations by the FDTD method”, Comput. Phys. Comm. 181, 687–702 (2010). http://dx.doi.org/10.1016/j.cpc.2009.11.008CrossrefGoogle Scholar

  • [32] P. Nagpal, N.C. Lindquist, S.-H. Oh, and D.J. Norris, “Ultra-smooth Patterned Metals for Plasmonics and Metamaterials”, Science 325, 594–597, (2009). http://dx.doi.org/10.1126/science.1174655Web of ScienceCrossrefGoogle Scholar

  • [33] P. Chaturvedi, W. Wu, V.J. Logeeswaran, Z. Yu, M.S. Islam, S.Y. Wang, R.S. Williams, and N.X. Fang, “A smooth optical superlens”, Appl. Phys. Lett. 96, 043102 (2010). http://dx.doi.org/10.1063/1.3293448Web of ScienceCrossrefGoogle Scholar

  • [34] M. Schøler and R.J. Blaikie, “Resonant surface roughness interactions in planar superlenses”, Microelectron. Eng. 87, 887–889 (2010). http://dx.doi.org/10.1016/j.mee.2009.12.027CrossrefWeb of ScienceGoogle Scholar

  • [35] M. Stolarek, P. Wróbel, T. Stefaniuk, M. Wlazło, A. Pastuszczak, and R. Kotyński, “Spatial filtering with rough metal-dielectric layered metamaterials”, Phot. Lett. of Poland 5, 60–62 (2013). Google Scholar

  • [36] R. Kotynski, H. Baghdasaryan, T. Stefaniuk, A. Pastuszczak, M. Marciniak, A. Lavrinenko, K. Panajotov, and T. Szoplik, “Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies”, Opto-Electron. Rev. 18, 446–457 (2010). http://dx.doi.org/10.2478/s11772-010-0051-6Web of ScienceCrossrefGoogle Scholar

  • [37] S. Huang, H. Wang, K.-H. Ding, and L. Tsang, “Subwave-length imaging enhancement through a three-dimensional plasmon superlens with rough surface”, Opt. Lett. 37, 1295–1297 (2012). http://dx.doi.org/10.1364/OL.37.001295CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2013-09-28

Published in Print: 2013-12-01


Citation Information: Opto-Electronics Review, Volume 21, Issue 4, Pages 355–366, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-013-0106-6.

Export Citation

© 2013 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in