Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 21, Issue 4


Real time area-based stereo matching algorithm for multimedia video devices

T. Hachaj
  • Institute of Computer Science and Computer Methods, Pedagogical University of Krakow, 2 Podchorążych Ave, 30-084, Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Ogiela
Published Online: 2013-09-28 | DOI: https://doi.org/10.2478/s11772-013-0107-5


In this paper we investigate stereovision algorithms that are suitable for multimedia video devices. The main novel contribution of this article is detailed analysis of modern graphical processing unit (GPU)-based dense local stereovision matching algorithm for real time multimedia applications. We considered two GPU-based implementations and one CPU implementation (as the baseline). The results (in terms of frame per second, fps) were measured twenty times per algorithm configuration and, then averaged (the standard deviation was below 5%). The disparity range was [0,20], [0,40], [0,60], [0,80], [0,100] and [0,120]. We also have used three different matching window sizes (3×3, 5×5 and 7×7) and three stereo pair image resolutions 320×240, 640×480 and 1024×768. We developed our algorithm under assumption that it should process data with the same speed as it arrives from captures’ devices. Because most popular of the shelf video cameras (multimedia video devices) capture data with the frequency of 30Hz, this frequency was threshold to consider implementation of our algorithm to be “real time”. We have proved that our GPU algorithm that uses only global memory can be used successfully in that kind of tasks. It is very important because that kind of implementation is more hardware-independent than algorithms that operate on shared memory. Knowing that we might avoid the algorithms failure while moving the multimedia application between machines operating different hardware. From our knowledge this type of research has not been yet reported.

Keywords: stereovision; GPU algorithm; local methods; dense methods; CUDA

  • [1] S. Lefebvre, S. Ambellouis, and F. Cabestaing, “A 1D approach to correlation-based stereo matching”, Image Vision Comput. 29, 580–593 (2011). http://dx.doi.org/10.1016/j.imavis.2011.05.003Web of ScienceCrossrefGoogle Scholar

  • [2] J-J. Orteu, “3-D computer vision in experimental mechanics”, Opt. Laser. Eng. 47, 282–291 (2009). http://dx.doi.org/10.1016/j.optlaseng.2007.11.009Google Scholar

  • [3] D. Garcia, J.J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accuratemeasurement of 3D displacements: application to sheet metal forming”, J. Mater. Process. Tech. 125-126, 736–742 (2002). http://dx.doi.org/10.1016/S0924-0136(02)00380-1CrossrefGoogle Scholar

  • [4] J. Xavier, A.M.P. de Jesus, J.J.L. Morais, and J.M.T. Pinto, “Stereovision measurements on evaluating the modulus of elasticity of wood by compression tests parallel to the grain”, Constr. Build. Mater. 26, 207–215 (2012). http://dx.doi.org/10.1016/j.conbuildmat.2011.06.012Web of ScienceCrossrefGoogle Scholar

  • [5] M. Uematsu, N. Suzuki, A. Hattori, Y. Otake, S. Suzuki, M. Hayashibe, S. Kobayashi, and A. Uchiyama, “A real-time data fusion system updating 3D organ shapes using colour information from multi-directional cameras”, ICS 1268, Proc. Computer Assisted Radiology and Surgery, 741–746 (2004). Google Scholar

  • [6] L-M. Su, B.P. Vagvolgyi, R. Agarwal, C.E. Reiley, R.H. Taylor, and G.D. Hager, “Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration”, Urology 73, 896–900 (2009). http://dx.doi.org/10.1016/j.urology.2008.11.040Web of ScienceCrossrefGoogle Scholar

  • [7] Q. Yu, H. Araújo, and H. Wang, “A stereovision method for obstacle detection and tracking in non-flat urban environments”, Auton. Robot. 19, 141–157 (2005). http://dx.doi.org/10.1007/s10514-005-0612-6CrossrefGoogle Scholar

  • [8] R. Labayrade, C. Royere, D. Gruyer, and D. Aubert, “Cooperative fusion for multi-obstacles detection with use of stereovision and laser scanner”, Auton. Robot. 19, 117–140 (2005). http://dx.doi.org/10.1007/s10514-005-0611-7CrossrefGoogle Scholar

  • [9] K. Kohara, N. Suganuma, T. Negishi and Takuya Nanri, “Obstacle detection based on occupancy grid maps using stereovision system”, Int. J. Intell. Transport. Syst. Research 8, 85–95 (2009). http://dx.doi.org/10.1007/s13177-010-0009-6CrossrefGoogle Scholar

  • [10] G. Pajares and J.M. de la Cruz, “A probabilistic neural network for attribute selection in stereovision matching”, Neural Comput. Appl., 83–89 (2002). CrossrefGoogle Scholar

  • [11] H. Halawana, H. Hamdan, and M. Hamdan, “Dense stereovision using mono-CCD color cameras”, Artif. Life Robot. 15, 508–511 (2010). http://dx.doi.org/10.1007/s10015-010-0853-0CrossrefGoogle Scholar

  • [12] A.S. Ogale and Y. Aloimonos, “Shape and the stereo correspondence problem”, Int. J. Comput. Vision 65, 147–162 (2005). http://dx.doi.org/10.1007/s11263-005-3672-3CrossrefGoogle Scholar

  • [13] G. Pajares and J.M. de la Cruz, “Fuzzy cognitive maps for stereovision matching”, Pattern recogn. 39, 2101–2114 (2006). http://dx.doi.org/10.1016/j.patcog.2006.04.003CrossrefGoogle Scholar

  • [14] G. Pajares, J.M. de la Cruz, and J.A. López-Orozco, “Relaxation labelling in stereo image matching”, Pattern Recogn. 33, 53–68 (2000). http://dx.doi.org/10.1016/S0031-3203(99)00036-9CrossrefGoogle Scholar

  • [15] L. Di Stefano, M. Marchionni, and S. Mattocci, “A fast area-based stereo matching algorithm”, Image Vision Comput. 22, 983–1005 (2004). http://dx.doi.org/10.1016/j.imavis.2004.03.009CrossrefGoogle Scholar

  • [16] Q. Zhu, Y. Jiang, W. Deng and L. Tang, “Crowdedness estimation approach based on stereovision for bus passengers”, J. Shanghai University 14, 17–23 (2010). http://dx.doi.org/10.1007/s11741-010-0104-1CrossrefGoogle Scholar

  • [17] G. Pajares and J.M. de la Cruz, “Stereovision matching through support vector machines”, Pattern Recogn. Lett. 24, 2575–2583 (2003). http://dx.doi.org/10.1016/S0167-8655(03)00102-8CrossrefGoogle Scholar

  • [18] J. Delon and B. Rougé, “Small baseline stereovision”, J. Math. Imaging Vision 28, 209–223 (2007). http://dx.doi.org/10.1007/s10851-007-0001-1CrossrefGoogle Scholar

  • [19] M.J.P.M. Lemmens, “A survey on stereo matching techniques”, Proc. 16 th ISPRSC. In ASPRS 27/B8, pp.11–23, Kyoto, 1988. Google Scholar

  • [20] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms”, Int. J. Comput. Vision 47Issue 1–3, 7–42 (2002). http://dx.doi.org/10.1023/A:1014573219977CrossrefGoogle Scholar

  • [21] N. Lazarosa, G.C. Sirakoulisb, and A. Gasteratosa, “Review of stereo vision algorithms: from software to hardware”, Int. J. Optomechatr. 2, 435–462 (2008). http://dx.doi.org/10.1080/15599610802438680CrossrefGoogle Scholar

  • [22] A.H.J. Koning, K.J. Zuidervelda, and M.A. Viergevera, “Volume visualization on shared memory architectures”, Parallel Comput. 23, 915–925 (1997). http://dx.doi.org/10.1016/S0167-8191(97)00034-3CrossrefGoogle Scholar

  • [23] T. Hachaj and M.R. Ogiela, “Framework for cognitive analysis of dynamic perfusion computed tomography with visualization of large volumetric data”, J. Electron. Imaging. 21, (2012), doi: 10.1117/1.JEI.21.4.043017. Web of ScienceCrossrefGoogle Scholar

  • [24] T. Hachaj and M.R. Ogiela, “Visualization of perfusion abnormalities with GPU-based volume rendering”, Comput. Graphics 36, 163–169 (2012). http://dx.doi.org/10.1016/j.cag.2012.01.002CrossrefWeb of ScienceGoogle Scholar

  • [25] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, “GpuCV: A GPU-accelerated framework for image processing and computer vision”, Lect. Notes Comput. 5359, 430–439 (2008). http://dx.doi.org/10.1007/978-3-540-89646-3_42CrossrefGoogle Scholar

  • [26] D. Castańo-Díez, D. Moser, A. Schoenegger, S. Pruggnaller, and A.S Frangakis, “Performance evaluation of image processing algorithms on the GPU”, J. Struct. Biol. 164, 153–160 (2008). http://dx.doi.org/10.1016/j.jsb.2008.07.006CrossrefGoogle Scholar

  • [27] R. Di Salvo and C. Pino, “Image and video processing on CUDA: state of the art and future directions”, MACMESE’11 Proc. 13th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, pp. 60–66, 2011. Google Scholar

  • [28] W. Lik Dennis Lui, R. Jarvis, Eye-Full Tower, “A GPU-based variable multibaseline omnidirectional stereovision system with automatic baseline selection for outdoor mobile robot navigation”, Robot. Auton. Syst. 58, 747–761 (2010). http://dx.doi.org/10.1016/j.robot.2010.02.007Web of ScienceCrossrefGoogle Scholar

  • [29] S. Prehn, “GPU stereo vision”, http://www.planetswebdesign.de/fileadmin/pdfs/Prehn%20Sebastian%20-%20GPU%20Stereo%20Vision%20-%202007-12-06.pdf Google Scholar

  • [30] R. Fujiki, H. Yoshimoto, D. Arita, and R. Taniguchi, “Real-time model-based hand shape estimation with stereo vision”, Proc. of Korea-Japan Joint Workshop on Frontiers of Computer Vision, pp. 225–230, 2005. Google Scholar

  • [31] NVIDIA CUDA Compute Unified Device Architecture, Programming Guide, Version 2.0, http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf, (2008). Google Scholar

  • [32] M.R. Ogiela and S. Bodzioch, “Computer analysis of gallbladder ultrasonic images towards recognition of pathological lesions”, Opto-Electron. Rev. 19, 155–168 (2011). http://dx.doi.org/10.2478/s11772-011-0001-yCrossrefWeb of ScienceGoogle Scholar

  • [33] S. Bodzioch and M.R. Ogiela, “New approach to gallbladder ultrasonic images analysis and lesions recognition”, Computerized Medical Imaging and Graphics. 33, 154–170 (2009). http://dx.doi.org/10.1016/j.compmedimag.2008.11.003CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2013-09-28

Published in Print: 2013-12-01

Citation Information: Opto-Electronics Review, Volume 21, Issue 4, Pages 367–375, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-013-0107-5.

Export Citation

© 2013 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in