Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 21, Issue 4


Semiconductor detectors and focal plane arrays for far-infrared imaging

A. Rogalski
Published Online: 2013-09-28 | DOI: https://doi.org/10.2478/s11772-013-0110-x


The detection of far-infrared (far-IR) and sub-mm-wave radiation is resistant to the commonly employed techniques in the neighbouring microwave and IR frequency bands. In this wavelength detection range the use of solid state detectors has been hampered for the reasons of transit time of charge carriers being larger than the time of one oscillation period of radiation. Also the energy of radiation quanta is substantially smaller than the thermal energy at room temperature and even liquid nitrogen temperature. The realization of terahertz (THz) emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics.

Development of semiconductor focal plane arrays started in seventies last century and has revolutionized imaging systems in the next decades. This paper presents progress in far-IR and sub-mm-wave semiconductor detector technology of focal plane arrays during the past twenty years. Special attention is given on recent progress in the detector technologies for real-time uncooled THz focal plane arrays such as Schottky barrier arrays, field-effect transistor detectors, and microbolometers. Also cryogenically cooled silicon and germanium extrinsic photoconductor arrays, and semiconductor bolometer arrays are considered.

Keywords: THz detectors; focal plane arrays; Schottky barrier diodes; semiconductor hot electron bolometers; extrinsic photodetectors; performance limits

  • [1] P.H. Siegel, ”Terahertz technology”, IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002). http://dx.doi.org/10.1109/22.989974CrossrefGoogle Scholar

  • [2] P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging Part I: Introduction and techniques”, Int. J. Infrared Millimeter Waves 27, 465–480 (2006). http://dx.doi.org/10.1007/s10762-006-9103-xCrossrefGoogle Scholar

  • [3] P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging Part II: Instrumets”, Int. J. Infrared Millimeter Waves 27, 631–655 (2006). http://dx.doi.org/10.1007/s10762-006-9109-4CrossrefGoogle Scholar

  • [4] G. Chattopadhyay, “Submillimeter-wave coherent and incoherent sensors for space applications”, in: Sensors. Advancements in Modelling, Design Issues, Fabrication and Practical Applications, pp. 387–414, edited by S.C. Mukhopadhyay and R.Y.M. Huang, Springer, New York, 2008. Google Scholar

  • [5] T.W. Crowe, W.L. Bishop, D.W. Porterfield, J.L. Hesler, and R.M. Weikle, “Opening the terahertz window with integrated diode circuits”, IEEE J. Solid-State Circuits 40, 2104–2110 (2005). http://dx.doi.org/10.1109/JSSC.2005.854599CrossrefGoogle Scholar

  • [6] D. Dragoman and M. Dragoman, “Terahertz fields and applications”, Prog. Quant. Electron. 28, 1–66. (2004). http://dx.doi.org/10.1016/S0079-6727(03)00058-2CrossrefGoogle Scholar

  • [7] J. Wei, D. Olaya, B.S. Karasik, S.V. Pereverzev, A.V. Sergeev, and M.E. Gershenzon, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics”, Nature Nanotechnol. 3, 496–500 (2008). http://dx.doi.org/10.1038/nnano.2008.173CrossrefGoogle Scholar

  • [8] “10 emerging technologies that will change your world”, Technology Rev., 32–50, February 2004. Google Scholar

  • [9] A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology. Fundamentals and Applications, Springer, Berlin, 2011. Google Scholar

  • [10] F. Sizov, “THz radiation sensors”, Opto-Electron. Rev. 18, 10–36 (2010). http://dx.doi.org/10.2478/s11772-009-0029-4CrossrefGoogle Scholar

  • [11] F. Sizov and A. Rogalski, “THz detectors”, Prog. Quantum Electron. 34, 278–347 (2010). http://dx.doi.org/10.1016/j.pquantelec.2010.06.002CrossrefGoogle Scholar

  • [12] M. Harwit, G. Helou, L. Armus, C.M. Bradford, P.F. Goldsmith, M. Hauser, D. Leisawitz, D.F. Lester, G. Rieke, and S.A. Rinehart, “Far-Infrared/Submillimeter astronomy from space tracking an evolving universe and the emergence of life”, http://www.ipac.caltech.edu/DecadalSurvey/farir.html Google Scholar

  • [13] A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2011. Google Scholar

  • [14] T. Ueda, Z. An, and S. Komiyama, ”Temperature dependence of novel single-photon detectors in the long-wavelength infrared range”, J. Infrared Milli. Terahz Waves (2010); DOI 10.1007/s10762-010-9659-3. CrossrefGoogle Scholar

  • [15] J.A. Ratches, “Current and future trends in military night vision applications”, Ferroelectrics 342, 183–192 (2006). http://dx.doi.org/10.1080/00150190600946351CrossrefGoogle Scholar

  • [16] M. Kohin and N. Butler, “Performance limits of uncooled VOx microbolometer focal-plane arrays”, Proc. SPIE 5406, 447–453 (2004). http://dx.doi.org/10.1117/12.542482CrossrefGoogle Scholar

  • [17] G.H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter, Cambridge University Press, Cambridge, 2003. Google Scholar

  • [18] R. Ham, Y. Zhang, D. Coquillat, H. Videlier, W. Knap, E. Brown, and K.K. O, “A 280-GHz diode detector in 130-nm digital CMOS”, IEEE J. Solid-State Circuits 46, 2602–2612 (2011). http://dx.doi.org/10.1109/JSSC.2011.2165234CrossrefGoogle Scholar

  • [19] R. Han, Y. Zhang, Y. Kim, D.Y. Kim, H. Shichijo, E. Afshari, K. O, ”280GHz and 860GHz image sensors using Schottky-barrier diodes in 0.13 μm digital CMOS”, IEEE Inter. Solid-State Circuits Confer., pp. 253–253 (2012). Google Scholar

  • [20] J.L. Hesler and T.W. Crowe, “Responsivity and noise measurements of zero-bias Schottky diode detectors”, in Proc. 18th Int. Symp. Space Terahertz Techn., Pasadena, 2007. Google Scholar

  • [21] E.R. Brown, A.C. Young, J. Zimmerman, H. Kazemi, and A.C. Gossard, “High-sensitivity, quasi-optically-coupled semimetal-semiconductor detectors at 104 GHz”, in Proc. SPIE 6212, 621205 (2006). http://dx.doi.org/10.1117/12.665364Google Scholar

  • [22] Z. Zhang, R. Rajavel, P. Deelman, and P. Fay, “Sub-micro area heterojunction backward diode millimeter-wave detectors with 0.18 pW/Hz1/2 noise equivalent power”, IEEE Microw. Wireless Compon. Lett. 21, 267–269 (2011). http://dx.doi.org/10.1109/LMWC.2011.2123878Google Scholar

  • [23] R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D.K. Maude, S. Rumyantsev, and M.S. Shur, “Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power”, Appl. Phys. Lett. 89, 253511 (2006). http://dx.doi.org/10.1063/1.2410215CrossrefGoogle Scholar

  • [24] E. Öjefors, U.R. Pfeiffer, A. Lisauskas, and H.G. Roskos, “A 0.65 THz focal-plane array in a quarter-micron CMOS process technology”, IEEE J. Solid-State Circuits 44, 1968–1280 (2009). http://dx.doi.org/10.1109/JSSC.2009.2021911Google Scholar

  • [25] R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H.M. Keller, A. Carhelin, A. Kaiser, and U.R. Pfeiffer, “A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS”, IEEE J. Solid-State Circuits 47, 2999–3012 (2012). http://dx.doi.org/10.1109/JSSC.2012.2217851Google Scholar

  • [26] N. Oda, “Uncooled bolometer-type terahertz focal-plane array and camera for real-time imaging”, Comptes Rendus Physique 11, 496–509 (2010). http://dx.doi.org/10.1016/j.crhy.2010.05.001CrossrefGoogle Scholar

  • [27] D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, “Broadband THz uncooled antenna-coupled microbolometer array-electromagnetic design, simulations and measurements”, IEEE T. on Terahertz Science and Technology 2, 299–305 (2012). http://dx.doi.org/10.1109/TTHZ.2012.2188395CrossrefGoogle Scholar

  • [28] M. Bolduc, M. Terroux, B. Tremblay, L. Marchese, E. Savard, M. Doucet, H. Oulachgar, C. Alain, H. Jerominek, and A. Bergeron, “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera”, Proc. SPIE 8023, 80230C-1–10 (2011). Google Scholar

  • [29] OAD-7 Golay Detector Operating Manual, QMC Instruments Ltd., Cardiff, U.K., Jan. 4, 2005. Google Scholar

  • [30] Pyroelectric Detector, Product Sheet forModel SPH-62. Spectrum Detector Inc., Lake Oswego, OR, www.spectrum-detector.com Google Scholar

  • [31] J. Zmuidzinas and P.L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics”, Proc. IEEE 92, 1597–1616 (2004). http://dx.doi.org/10.1109/JPROC.2004.833670CrossrefGoogle Scholar

  • [32] E.J. Becklake, C.D. Payne, and B.E. Pruer, “Submillimetre performance of diode detectors using Ge, Si and GaAs”, J. Phys. D: Appl. Phys. 3, 473–481 (1970). http://dx.doi.org/10.1088/0022-3727/3/4/306CrossrefGoogle Scholar

  • [33] D.T. Young and J.C. Irvin, “Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique,” Proc. IEEE 53, 2130–2132 (1965). http://dx.doi.org/10.1109/PROC.1965.4511CrossrefGoogle Scholar

  • [34] T.W. Crowe, D.P. Porterfield, J.L. Hesler, W.L. Bishop, D.S. Kurtz, and K. Hui, “Terahertz sources and detectors,” Proc SPIE 5790, 271–280 (2005). http://dx.doi.org/10.1117/12.604309CrossrefGoogle Scholar

  • [35] T.W. Crowe, “GaAs Schottky barrier mixer diodes for the frequency range 1–10 THz”, Int. J. Infrared Millim. Waves 11, 765–777 (1990). http://dx.doi.org/10.1007/BF01010045CrossrefGoogle Scholar

  • [36] M. Dyakonov and M.S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current”, Phys. Rev. Lett. 71, 2465–2468 (1993). http://dx.doi.org/10.1103/PhysRevLett.71.2465CrossrefGoogle Scholar

  • [37] W. Knap and M.I. Dyakonov, “Field effect transistors for terahertz applications”, in Handbook of Terahertz Technology, edited by D. Saeedkia, pp 121–155, Woodhead Publishing, Cambridge, 2013. Google Scholar

  • [38] W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M.S. Shur, “Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors”, Appl. Phys. Lett. 85, 675 (2004). http://dx.doi.org/10.1063/1.1775034CrossrefGoogle Scholar

  • [39] A.W.M. Lee, B.S. Williams, S. Kumar, Q. Hu, and J.L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320×240 microbolometer focal-plane array”, IEEE Photonics Technology Letters 18, 1415–1417 (2006). http://dx.doi.org/10.1109/LPT.2006.877220Google Scholar

  • [40] D. Corcos, I. Brouk, M. Malits, A. Svetlitza, S. Stolyarova, A. Abramovich, E. Farber, N. Bachar, D. Elad, and Y. Nemirovsky, ”The TeraMOS sensor for monolithic passive THz imagers”, in: 2011 IEEE Int. Confer. Microwaves, Communications, Antennas and Electronic Systems (COMCAS), Tel Aviv, 2011. Google Scholar

  • [41] D.J. Burdette, J. Alverbro, Z. Zhang, P. Fay, Y. Ni, P. Potet, K. Sertel, G. Trichopoulos, K. Topalli, J. Volakis, and H.L. Mosbacker, “Development of an 80×64 pixel, broadband, real-time THz imager”, Proc. SPIE 8023, 80230F-1–12 (2011). Google Scholar

  • [42] V. Dobrovolsky and F.F. Sizov, “THz/sub-THz bolometer based on the electron heating in a semiconductor waveguide”, Opto-Electron. Rev. 18, 250–258 (2010). http://dx.doi.org/10.2478/s11772-010-1033-8CrossrefGoogle Scholar

  • [43] B.V. Rollin and E.L. Simmons, “Long wavelength infrared photoconductivity of silicon at low temperatures”, Proc. Phys. Soc. B65, 995–996 (1952). http://dx.doi.org/10.1088/0370-1301/65/12/115CrossrefGoogle Scholar

  • [44] E. Burstein, J.J. Oberly and J.W. Davisson, “Infrared photoconductivity due to neutral impurities in silicon”, Phys. Rev. 89(1), 331–332 (1953). http://dx.doi.org/10.1103/PhysRev.89.331CrossrefGoogle Scholar

  • [45] J. Leotin, “Far infrared photoconductive detectors”, Proc. SPIE 666, 81–100 (1986). http://dx.doi.org/10.1117/12.938823CrossrefGoogle Scholar

  • [46] E.E. Haller, “Advanced far-infrared detectors”, Infrared Phys. Techol. 35, 127–146 (1994). http://dx.doi.org/10.1016/1350-4495(94)90074-4CrossrefGoogle Scholar

  • [47] J.-Q. Wang, P.I. Richards, J.W. Beeman, J.W. Haegel, and E.E. Haller, “Optical efficiency of far-infrared photoconductors”, Appl. Opt. 25, 4127–4134 (1986). http://dx.doi.org/10.1364/AO.25.004127CrossrefGoogle Scholar

  • [48] A.G. Kazanskii, P.L. Richards, and E.E. Haller, “Far-infrared photoconductivity of uniaxially stressed germanium”, Appl. Phys. Lett. 31, 496–497 (1977). http://dx.doi.org/10.1063/1.89755CrossrefGoogle Scholar

  • [49] E.E. Haller, M.R. Hueschen and P.L. Richards, “Ge:Ga photoconductors in low infrared backgrounds”, Appl. Phys. Lett. 34, 495–497 (1979). http://dx.doi.org/10.1063/1.90861CrossrefGoogle Scholar

  • [50] E.E. Haller and J.W. Breeman, “Far infrared photoconductors: recent advances and future prospects”, Far-IR, Sub-mm & MM Detector Technology Workshop, Monterey, 2002. Google Scholar

  • [51] A. Poglitsch, C. Waelkens, O.H. Bauer, J. Cepa, H. Feuchtgruber, T. Henning, C. van Hoof, F. Kerschbaum, O. Krause, E. Renotte, L. Rodriguez, P. Saracenoi, and B. Vandenbussche, “The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Laboratory”, Proc. SPIE 7010, 701005 (2008). http://dx.doi.org/10.1117/12.790016CrossrefGoogle Scholar

  • [52] http://fifi-ls.mpg-garching.mpg.dr/detector.html Google Scholar

  • [53] http://pacs.mpe.mpg.de/p15n.html Google Scholar

  • [54] J. Farhoomand, D.L. Sisson, and J.W. Beeman, “Viability of layered-hybrid architecture for far IR focal-plane arrays”, Infrared Phys.&Techn. 51, 152–159 (2008). http://dx.doi.org/10.1016/j.infrared.2007.07.004CrossrefGoogle Scholar

  • [55] M. Ressler, H. Hogue, M. Muzilla, J. Blacksberg, J. Beeman, E. Haller, J. Huffman, J. Farhoomand, E. Young “Development of large format far-infrared detectors”, Astro2010: The Astronomy and Astrophysics Decadal Survey, Technology Development Papers, no. 18. Google Scholar

  • [56] J. Farhoomand, D.L. Sisson, and J.W. Beeman, ”Latest progress in developing large format Ge arrays for far-IR astronomy”, Proc. SPIE 7741, 77410A-1–8 (2010). http://dx.doi.org/10.1117/12.871474Google Scholar

  • [57] M.D. Petroff and M.G. Stapelbroek, “Blocked-impurity-band detectors,” U.S. Patent No. 4,566,960. Filled Oct. 23, 1980, granted Feb. 4, 1986. Google Scholar

  • [58] P.R. Norton, “Infrared image sensors”, Opt. Eng. 30, 1649–1663 (1991). http://dx.doi.org/10.1117/12.56001CrossrefGoogle Scholar

  • [59] H. Hogue, E. Atkins, D. Reynolds, M. Salcido, L Dawson, D. Molyneux, and M. Muzilla, “Update on blocked impurity band detector technology from DRS”, Proc. SPIE 7780, 778004-1–10 (2010). Google Scholar

  • [60] R. Mills, E. Beuville, E. Corrales, A. Hoffman, G. Finger, and D. Ives, “Evolution of large format impurity band conductor focal plane arrays for astronomy applications”, Proc. SPIE 8154, 81540R-1–10 (2011) http://dx.doi.org/10.1117/12.913638Google Scholar

  • [61] J. Bandaru, J.W. Beeman, and E.E. Haller, “Growth and performance of Ge:Sb blocked impurity band (BIB) detectors”, Proc. SPIE 4486, 193–199 (2002). http://dx.doi.org/10.1117/12.455106CrossrefGoogle Scholar

  • [62] L.A. Reichertz, J.W. Beeman, B.L. Cardozo, G. Jakob, R. Katterloher, N.M. Haegel, and E.E. Haller, “Development of a GaAs-based BIB detector for sub-mm wavelengths”, Proc. SPIE 6275, 62751S (2006). http://dx.doi.org/10.1117/12.673039Google Scholar

  • [63] P.L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994). http://dx.doi.org/10.1063/1.357128CrossrefGoogle Scholar

  • [64] A.L. Woodcraft, R.V. Sudiwal, E. Wakui, and C. Paine, “Hopping conduction in NTD germanium: comparison between measurement and theory”, J. Low Temp. Phys. 134, 925–944 (2004). http://dx.doi.org/10.1023/B:JOLT.0000013209.08494.01CrossrefGoogle Scholar

  • [65] Herschel Space Observatory, http://herschel.jpl.nasa.gov/spireInstrument.shtml Google Scholar

  • [66] P. Agnese, C. Buzzi, P. Rey, L. Rodriguez, and J.L. Tissot, “New technological development for far-infrared bolometer arrays”, Proc. SPIE 3698, 284–290 (1999). http://dx.doi.org/10.1117/12.354530CrossrefGoogle Scholar

  • [67] N. Billot, P. Agnese, J.L. Augueres, A. Beguin, and A. Bouere, O. Boulade, C. Cara, C. Cloue, E. Doumayrou, L. Duband, B. Horeau, I. Le Mer, J.L. Pennec, J. Martignac, K. Okumura, V. Reveret, M. Sauvage, F. Simoens, and L. Vigroux, “The Herschel/PACS 2560 bolometers imaging camera”, Proc. SPIE 6265, 62650D (2006). http://dx.doi.org/10.1117/12.671154Google Scholar

  • [68] G.H. Rieke, “Infrared detector arrays for astronomy”, Annu. Rev. Astrophys. 45, 77–115 (2007). http://dx.doi.org/10.1146/annurev.astro.44.051905.092436CrossrefGoogle Scholar

  • [69] T.G. Phillips and K.B. Jefferts, “A low temperature bolometer heterodyne receiver for millimeter wave astronomy”, Rev. Sci. Instrum. 44, 1009–1014 (1973). http://dx.doi.org/10.1063/1.1686288CrossrefGoogle Scholar

  • [70] E.H. Putley, “InSb submilimeter photoconductive detectors,” in Semiconductors and Semimetals, Vol. 12, pp. 143–167, edited by R.K. Willardson and A.C. Beer, Academic Press, New York, 1977. http://dx.doi.org/10.1016/S0080-8784(08)60148-9Google Scholar

  • [71] http://www.infraredlaboratories.com/InSb_Hot_e_Bolom-eters.html Google Scholar

  • [72] T. Phillips and D. Woody, “Millimeter-wave and submillimeter-wave receivers”, Annu. Rev. Astron. Astrophys. 20, 285–321 (1982). http://dx.doi.org/10.1146/annurev.aa.20.090182.001441CrossrefGoogle Scholar

About the article

Published Online: 2013-09-28

Published in Print: 2013-12-01

Citation Information: Opto-Electronics Review, Volume 21, Issue 4, Pages 406–426, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-013-0110-x.

Export Citation

© 2013 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in