Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 22, Issue 1

Issues

The fabrication and optical detection of a vertical structure organic thin film transistor

H. Zhang
  • Department of Electronic Science and Technology, College of Applied Science, Key Laboratory of Engineering Dielectrics and Its Application, Harbin University of Science and Technology, Harbin, 150080, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Wang
  • Department of Electronic Science and Technology, College of Applied Science, Key Laboratory of Engineering Dielectrics and Its Application, Harbin University of Science and Technology, Harbin, 150080, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Jia
  • Department of Electronic Science and Technology, College of Applied Science, Key Laboratory of Engineering Dielectrics and Its Application, Harbin University of Science and Technology, Harbin, 150080, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-29 | DOI: https://doi.org/10.2478/s11772-014-0174-2

Abstract

Using vacuum evaporation and sputtering process, we prepared a photoelectric transistor with the vertical structure of Cu/copper phthalocyanine (CuPc)/Al/copper phthalocyanine (CuPc)/ITO. The material of CuPc semiconductor has good photosensitive properties. Excitons will be generated after the optical signal irradiation in semiconductor material, and then transformed into photocurrent under the built-in electric field formed by the Schottky contact, as the organic transistor drive current makes the output current enlarged. The results show that the I–V characteristics of transistor are unsaturated. When device was irradiated by full band (white) light, its working current significantly increased. In full band white light, when Vec = 3 V, the ratio of light and no light current was ranged for 2.9–6.4 times. Device in the absence of light current amplification coefficient is 16.5, and white light amplification coefficient is 98.65.

  • [1] B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, and H.E. Katz, “Electronic sensing of vapours with organic transistors”, Appl. Phys. Lett. 78, 2229–2231 (2001). http://dx.doi.org/10.1063/1.1360785CrossrefGoogle Scholar

  • [2] G.H. Gelinck, H.E.A. Huitema, E.V. Veenendaal, E. Cantatore, and L. Schrijnemakers, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors”, Nature Mater. 3, 106–110 (2004). http://dx.doi.org/10.1038/nmat1061CrossrefGoogle Scholar

  • [3] E.J. Meijer, D.M. Deleeuw, S. Setayesh, E. Van Veenendaal, and B.H. Huisman, “Solution-processed ambipolar organic field-effect transistors and inverters”, Nature Mater. 2, 678–82 (2003). http://dx.doi.org/10.1038/nmat978CrossrefGoogle Scholar

  • [4] D.J. Gundlach, Y.Y. Lin, T.N. Jackson, S.F. Nelson, and D.G. Schlom, “Pentacene organic thin-film transistors-molecular ordering and mobility”, IEEE Electron Device Lett. 18, 87–89 (1997). http://dx.doi.org/10.1109/55.556089CrossrefGoogle Scholar

  • [5] G. Horowitz, B. Bachet, A. Yassar, P. Lang, and F. Demanze, “Growth and characterization of sexithiophene single crystals”, Chem. Mater. 7, 1337–1341 (1995). http://dx.doi.org/10.1021/cm00055a010CrossrefGoogle Scholar

  • [6] M. Halik, H. Klauk, U. Zschieschang, G. Schmid and C. Dehm, “Low-voltage organic transistors with a novel molecular gate dielectric”, Nature (London) 431, 963–966 (2004). http://dx.doi.org/10.1038/nature02987CrossrefGoogle Scholar

  • [7] I. Mcculloch, M. Heeney, C. Bailey, K. Genevicius, and I. Macdonald, “Liquid-crystalline semiconducting polymers with high charge-carrier mobility”, Nature Mater. 5, 328–333 (2006). http://dx.doi.org/10.1038/nmat1612CrossrefGoogle Scholar

  • [8] Z.N. Bao, A.J. Lovinger, and A. Dodabalapur, “Organic field-effect transistors with high mobility based on copper phthalocyanine”, Appl. Phys. Lett. 69, 3066–3068 (1996). http://dx.doi.org/10.1063/1.116841CrossrefGoogle Scholar

  • [9] C.D. Dimitrakopoulos, A.R. Brown, and A. Pomp, “Molecular beam deposited thin film of pentacene for organic field effect transistor applications”, J. Appl. Phys. 80, 2501–2508 (1996). http://dx.doi.org/10.1063/1.363032CrossrefGoogle Scholar

  • [10] Y. Sarita, K. Pramod, and G. Subhasis, “Optimization of surface morphology to reduce the effect of grain boundaries and contact resistance in small molecule based thin film transistors”, APPL. Phys. Lett. 101, 193307–193310 (2012). http://dx.doi.org/10.1063/1.4766913CrossrefWeb of ScienceGoogle Scholar

  • [11] J. Zhang, J. Wang, H.B. Wang, and D.H. Yan, “Organic thin-film transistors in sandwich configuration”, Appl. Phys. Lett. 84, 142–144 (2004). http://dx.doi.org/10.1063/1.1638634CrossrefGoogle Scholar

  • [12] H. Ma, O. Acton, G. Ting, J.W. Ka and H.L. Yip, “Organic electronics and photonics”, Appl. Phys. Lett. 92, 113303–113305 (2008). http://dx.doi.org/10.1063/1.2857502CrossrefGoogle Scholar

  • [13] S.J. Lee, L.S. Noh, and H.S. Shin, “A novel four-mask low-temperature ploy crystalline silicon pmos thin-film transistor with advanced terrace structure for AMOLED application”, Electron Devic. Lett. 33, 1417–1419 (2012). http://dx.doi.org/10.1109/LED.2012.2210024CrossrefGoogle Scholar

  • [14] S. Zorba and Y. Gao, “Feasibility of static induction transistor with organic semiconductors”, Appl. Phys. Lett. 86, 193508–193510 (2005). http://dx.doi.org/10.1063/1.1906306CrossrefGoogle Scholar

  • [15] D. Wang, X. Wang, C. Wang, C. Pang, J. Yin, and Hong Zhao, “Fabrication and characteristics of sub-micrometer vertical type organic semiconductor copper phthalocyanine thin film transistor”, in 10th Int. Conf. Properties and Applications of Dielectric Materials, pp. 1–4, Harbin, 2012. Google Scholar

  • [16] X. Guo, F. Xing, F. Hong, J. Zhang, B. Wei, and J. Wang, “Improving organic field-effect transistors based on double active layers structure”, Curr. Appl. Phys. 10, 89–92 (2010). http://dx.doi.org/10.1016/j.cap.2009.05.001CrossrefGoogle Scholar

About the article

Published Online: 2013-12-29

Published in Print: 2014-03-01


Citation Information: Opto-Electronics Review, Volume 22, Issue 1, Pages 41–44, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-014-0174-2.

Export Citation

© 2014 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in