Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 22, Issue 1

Issues

Microthermomechanical infrared sensors

M. Steffanson
  • Dept. of Microelectronic and Nanoelectronic Systems, Ilmenau University of Technology, PO-BOX 100565, 98684, Ilmenau, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I. Rangelow
  • Dept. of Microelectronic and Nanoelectronic Systems, Ilmenau University of Technology, PO-BOX 100565, 98684, Ilmenau, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-29 | DOI: https://doi.org/10.2478/s11772-014-0176-0

Abstract

We present a state-of-the-art overview of microthermomechanical infrared sensor technology. The working principle of this sensor is based on a bi-material actuated micromechanical deflection, generated by an induced temperature rise due to incident infrared radiation absorption. In order to generate a thermal image the thermomechanical deflections of the freestanding microstructures are read by either capacitive, piezoresistive or optical means. Research and development activities in this field began in the early 1990s. The development of this technology within the last 20 years has resulted in innovations such as uncooled multiband infrared detection, high-speed infrared sensing and uncooled THz imaging. This paper outlines representative milestones of this technology and analyses important results of notable groups. Significant activities on capacitive and optical readout techniques of thermomechanical infrared arrays are presented. Furthermore the advantages of microthermomechanical infrared sensors over current well-established uncooled infrared technologies are summarized. In conclusion the latest developments of this technology offer a highly potential solution for a variety of important energy-saving, safety and security applications.

Keywords: infrared; microcantilever; micromirror; thermal detector; photomechanical; optomechanical; thermomechanical; FPA; optical readout

  • [1] A. Rogalski, “History of infrared detectors”, Opto-Electron. Rev. 20, 279–308 (2012). http://dx.doi.org/10.2478/s11772-012-0037-7CrossrefGoogle Scholar

  • [2] M. Erdmann, L. Zhang, S. Radhakrishnan, S. Wu, T. Goyette, and A. Gatesman “Uncooled photomechanical tera-hertz imagers”, Proc. SPIE 8363, 83630C (2012). http://dx.doi.org/10.1117/12.919058Google Scholar

  • [3] R. Ciupa and A. Rogalski, “Performance limitations of photon and thermal detectors“, Opto-Electron. Rev. 5, 257–266 (1997). Google Scholar

  • [4] E. Mounier, “Technical and market trends for microbolometers for thermography and night vision“, Proc. SPIE 8012, 80121U (2011). http://dx.doi.org/10.1117/12.877050Google Scholar

  • [5] http://www.flir.com/cs/emea/en/view/-id=41392 Google Scholar

  • [6] J. Matovic and Z. Jaksic, “Bimaterial actuators and sensor with built-in compensation of the ambient temperature interference”, Proc. Conf. Multimaterial Micro Manufacture 3, 1–4 (2007). Google Scholar

  • [7] S. Timoshenko, “Analysis of bimetal thermostats”. J. Opt. Soc. Am. 11, 233–255 (1925). http://dx.doi.org/10.1364/JOSA.11.000233CrossrefGoogle Scholar

  • [8] J.L. Halsor, “Radiation detective device”, US Patent No. 3,896,309 (1975). Google Scholar

  • [9] W. Riethmüller and W. Benecke. “Thermally excited silicon microactuators”. IEEE T. Electron Devices 35, 758–763 (1988). http://dx.doi.org/10.1109/16.2528CrossrefGoogle Scholar

  • [10] D. Sarid, Scanning Force Microscopy, Oxford University Press, New York, 1983 (1991). Google Scholar

  • [11] T. Thundat, S.L. Sharp, W.G. Fisher, R.J. Warmack, and E.A. Wachter, “Micromechanical radiation dosimeter”, Appl. Phys. Lett. 66, 1563–1565 (1995). http://dx.doi.org/10.1063/1.113647CrossrefGoogle Scholar

  • [12] T. Thundat, R.J. Warmack, G.Y. Chen, D.P. Allison. “Thermal and ambientinduced deflections of scanning force microscope cantilevers”, Appl. Phys. Lett. 64, 2894–2896 (1994). http://dx.doi.org/10.1063/1.111407CrossrefGoogle Scholar

  • [13] J.R. Barnes, R.J. Stephenson, C.N. Woodburn, S.J. O’Shea, M.E. Welland, T. Rayment, J.K. Gimzevski, and Ch. Gerber, “A femtojoule colorimeter using micromechanical sensors”, Rev. Sci. Instrum. 65, 3793–3798 (1994). http://dx.doi.org/10.1063/1.1144509CrossrefGoogle Scholar

  • [14] J.K. Gimzewski, Ch. Gerber, E. Meyer, and R.R. Schlittler, “Observation of a chemical reaction using a micromechanical sensor”, Chem. Phys. Lett. 217, 589–594 (1994). http://dx.doi.org/10.1016/0009-2614(93)E1419-HCrossrefGoogle Scholar

  • [15] J.R. Barnes, R.J. Stephenson, M.E. Welland, Ch. Gerber, and J.K. Gimezewski, “Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device”, Lett. To Nature 372, 79–81 (1994). http://dx.doi.org/10.1038/372079a0CrossrefGoogle Scholar

  • [16] E. Meyer, J.K. Gimzewski, Ch. Gerber, and R.R. Schlittler. “Micromechanical calorimeter with Picojoule-Sensitivity”, in J.K. Gimzewski and M.E. Welland, Ultimate Limits of Fabrication and Measurement, Kluwer Academic Publishers, 89–95 1995. http://dx.doi.org/10.1007/978-94-011-0041-0_12CrossrefGoogle Scholar

  • [17] P.G. Datskos, P.I. Oden, T. Thundat, E.A. Wachter, R.J. Warmack, and S.R. Hunter, “Remote infrared radiation detection using piezoresistive microcantilevers”, Appl. Phys. Lett. 69, 2986–2988 (1996). http://dx.doi.org/10.1063/1.117752CrossrefGoogle Scholar

  • [18] P.I. Oden, P.G. Datskos, T. Thundat, and R.J. Warmack, “Uncooled thermal imaging using a piezoresistive microcantilever”, Appl. Phys. Lett. 69, 3277–3279 (1996). http://dx.doi.org/10.1063/1.117309CrossrefGoogle Scholar

  • [19] E.A. Wachter, T. Thundat, P.I. Oden, R J. Warmack, P.G. Datskos, and S.L. Sharp, “Remote optical detection using microcantilevers”, Rev. Sci. Instrum. 67, 3434–3439 (1996). http://dx.doi.org/10.1063/1.1147149CrossrefGoogle Scholar

  • [20] P.I. Oden, E.A. Wachter, P.G. Datskos, T. Thundat, and R.J. Warmac, “Optical and infrared detection using microcantilevers”, Proc. SPIE 2744, 345–354 (1996). http://dx.doi.org/10.1117/12.243523CrossrefGoogle Scholar

  • [21] R. Manalis, S.C. Minne, C.F. Quate, G.G. Yaralioglu, A. Atalar, “Two-dimensional micromechanical bimorph arrays for detection of thermal radiation”, Appl. Phys. Lett. 70, 3311–3313 (1997). http://dx.doi.org/10.1063/1.119147CrossrefGoogle Scholar

  • [22] T. Perazzo, M. Mao, O. Kwon, A. Majumdar, J.B. Varesi, and P. Norton, “Infrared vision using uncooled microoptomechanical camera”, Appl. Phys. Lett. 74, 3567–3569 (1999). http://dx.doi.org/10.1063/1.124163CrossrefGoogle Scholar

  • [23] T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama, “optically readable bimaterial infrared detector”, Proc. SPIE 4369, 342–349 (2001). http://dx.doi.org/10.1117/12.445302CrossrefGoogle Scholar

  • [24] Z. Duan, Z. Guo, W. Wang, and D. Chen, “Uncooled optically readable bimaterial microcantilever infrared imaging device”, Chin. Phys. Lett. 20, 2130–2132 (2003). http://dx.doi.org/10.1088/0256-307X/20/12/012CrossrefGoogle Scholar

  • [25] J. Zhao, “High sensitivity photomechanical MW-LWIR imaging using an uncooled MEMS microcantilever array and optical readout”, Proc. SPIE 5783, 506–513 (2005). http://dx.doi.org/10.1117/12.606485CrossrefGoogle Scholar

  • [26] D. Grbovic, N.V. Lavrik, P.G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre. “Uncooled infrared imaging using bimaterial microcantilever arrays”, Appl. Phys. Lett. 89, 073118-1 (2006). http://dx.doi.org/10.1063/1.2337083CrossrefGoogle Scholar

  • [27] S.R. Hunter, R.A. Amantea, L.A. Goodman, D.B. Kharas, S. Gershtein, J.R. Matey, S.N. Perna, Y. Yu, N. Maley, and L.K. White, “High sensitivity uncooled microcantilever infrared imaging arrays”, Proc. SPIE 5074, 469–480 (2003). http://dx.doi.org/10.1117/12.497576CrossrefGoogle Scholar

  • [28] M. Steffanson, K. Gorovoy, M. Holz, T. Ivanov, R. Kampmann, R. Kleindienst, S. Sinzinger, and I.W. Rangelow. “Low-cost uncooled infrared detector using thermo-mechanical micro-mirror array with optical readout”, Proc. IRS2, I4, 85–88 (2013). Google Scholar

  • [29] http://optics.org/article/17600 Google Scholar

  • [30] D.J. Sauer, “Infared imager using room temperature capacitance sensor”, US Patent No. 5,844,238 (1998). Google Scholar

  • [31] H.H. Busta, “Direct view IR MEMS structure”, US Patent No. 6,140,646 (2000). Google Scholar

  • [32] M.J. Lurie, “Optical detectors using nulling for high linearity and large dynamic range”, US Patent No. 6,420,706 (2002). Google Scholar

  • [33] D.J. Channin, “Optomechanical radiant energy detector”, US Patent No. 6,392,233 (2002). Google Scholar

  • [34] T.S. Villani, “Uncooled IR detector array having improved temperature stability and reduced fixed pattern noise”, US Patent No. 6,583,416 (2003). Google Scholar

  • [35] R. Amantea, C.M. Knoedler, F.P. Pantuso, V.K. Patel, D.J. Sauer, and J.R. Tower, “An uncooled IR imager with 5 mK NEDT”, Proc. SPIE 3061, 210–222 (1997). http://dx.doi.org/10.1117/12.280340CrossrefGoogle Scholar

  • [36] R. Amantea, L.A. Goodman, F. Pantuso, D.J. Sauer, M. Varghese, T.S. Villani, and L.K. White, “Progress towards an uncooled IR imager with 5 mK NEDT”, Proc. SPIE 3436, 647–659 (1998). http://dx.doi.org/10.1117/12.328065CrossrefGoogle Scholar

  • [37] M. Varghese, “Resistive damping of pulse-sensed capacitive position sensors”, Master’s thesis, Massachusetts Institute of Technology, 4–31 (1998). Google Scholar

  • [38] L.-Q. Dong, X.-H. Liu, Y.-J. Zhao, and X.-X. Zhou. “The development status of the micro-cantilever array based un-cooled IR detectors”, Proc. SPIE 6621, 662129 (2008). http://dx.doi.org/10.1117/12.790988CrossrefGoogle Scholar

  • [39] G. Simelgor, “High sensitivity uncooled microcantilever infrared imaging arrays”, Optics & Opto-Electronics, Cornell Nano Scale Science & Technology Facility, 2005–2006 Research Accomplishments. CNF Project # 1202-04 (2005). Google Scholar

  • [40] S.R. Hunter, G.S. Maurer, G. Simelgor, S. Radhakrishnan, and J. Gray, “High sensitivity 25 μm and 50 μm pitch microcantilever IR imaging arrays” Proc. SPIE 6542, 65421F (2007). http://dx.doi.org/10.1117/12.726316Google Scholar

  • [41] S.R. Hunter, G. Maurer, L. Jiang, and G. Simelgor, “High sensitivity uncooled microcantilever infrared imaging array”, Proc. SPIE 6206, 1–12 (2006). Google Scholar

  • [42] S.R. Hunter, G.S. Maurer, G. Simelgor, S. Radhakrishnan, J. Gray, K. Bachir, T. Pennell, M. Bauer, and U. Jagadish, “Development and optimization of microcantilever based IR imaging arrays”, Proc. SPIE 6940, 694013 (2008). http://dx.doi.org/10.1117/12.771652CrossrefGoogle Scholar

  • [43] H. Kim, Y. Park, S. Oh, S. Kim, Y. Jo, and J. Kang, “A study on MicroCantilever Deflection for the infrared image sensor using bimetal structure”, Key Eng. Materials 345–346, 785–788 (2007). http://dx.doi.org/10.4028/www.scientific.net/KEM.345-346.785CrossrefGoogle Scholar

  • [44] I. Kwon, J. Kim, C. Hwang, Y. Lee, and H. Lee, “A high fill-factor uncooled infrared detector with low noise characteristics”, Proc. SPIE 6940, 694014 (2008). http://dx.doi.org/10.1117/12.780506CrossrefGoogle Scholar

  • [45] I.W. Kwon, D.S. Kim, W.Y. Kim, C.H. Hwang, and H.C. Lee, “Resonant cavity integrated absorber structure for capacitive infrared detectors”, Electron. Lett. 47, 8 (2011). http://dx.doi.org/10.1049/el.2010.2770CrossrefGoogle Scholar

  • [46] J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “Optimization and performance of high-resolution micro-optomechanical thermal sensors”, Sensor Actuator. A58, 113–119 (1997). http://dx.doi.org/10.1016/S0924-4247(96)01401-XCrossrefGoogle Scholar

  • [47] Y. Zhao, M. Mao, and A. Majumdar, “Application of Fourier optics for detecting deflections of infra-red-sensing cantilever arrays”, Microscale Therm. Eng. 3, 245–251 (1999). http://dx.doi.org/10.1080/108939599199666CrossrefGoogle Scholar

  • [48] Y. Zhao, “Optomechanical uncooled infrared imaging system”, PhD Thesis, UC Berkeley, 1–155 (2002). Google Scholar

  • [49] Y. Zhao, M. Mao, R. Horowitz, A. Majumdar, J. Varesi, P. Norton, and J. Kitchin, “Optomechanical uncooled infrared imaging system: design, mi-crofabrication, and performance”, J. MEMS 11, 136–146 (2002). http://dx.doi.org/10.1109/84.993448CrossrefGoogle Scholar

  • [50] Y. Zhao, J. Choi, R. Horowitz, A. Majumdar, J. Kitching, and P. Norton, “Characterization and performance of optomechanical uncooled infrared imaging system”, Proc. SPIE 4820, 164–174 (2003). http://dx.doi.org/10.1117/12.450542CrossrefGoogle Scholar

  • [51] J. Choi, J. Yamaguchi, S. Morales, R. Horowitz, Y. Zhao, and A. Majumdar, “Design and control of a thermal stabilizing system for a MEMS opto-mechanical uncooled infrared imaging camera”, Sensors Actuator. A104, 132–142 (2003). http://dx.doi.org/10.1016/S0924-4247(03)00004-9CrossrefGoogle Scholar

  • [52] A. Majumdar, ”Apparatus and method for visually identifying micro-forces with a palette of cantilever array blocks”, US Patent No. 7,105,358 (2006). Google Scholar

  • [53] S.-H. Lim, J. Choi, R. Horowitz, and A. Majumdar, “Design and fabrication of a novel bimorph micro-opto-mechanical sensor”, J. MEMS 14, 1–7 (2005). http://dx.doi.org/10.1109/JMEMS.2005.844147CrossrefGoogle Scholar

  • [54] T. Ishizuya, N. Amemiya, and K. Akagawa, “Optically readable radiation-displacement-conversion devices and methods, and image-rendering apparatus and methods employing same”, US Patent No. 6,080,988 (2000). Google Scholar

  • [55] T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama. “Optically readable bi-material infrared detector”, Proc. SPIE 4369, 342–349 (2001). http://dx.doi.org/10.1117/12.445302CrossrefGoogle Scholar

  • [56] T. Ishizuya, J. Suzuki, K. Akagawa, and T. Kazama. “160×120 pixels optically readable bimaterial infrared detector”, Proc. 15th IEEE Conf. on MEMS, 578–581 (2002). Google Scholar

  • [57] J.L. Corbeil, N.V. Lavrik, and S. Rajic, and P.G. Datskos. “Self-levelling uncooled microcantilever thermal detector”, Appl. Phys. Lett. 81, 1306–1308 2002. http://dx.doi.org/10.1063/1.1498870CrossrefGoogle Scholar

  • [58] P.G. Datskos, S. Rajic, and I. Datskou. “Photoinduced and thermal stress in silicon microcantilevers”, Appl. Phys. Lett. 73, 2319–2321 (1998). http://dx.doi.org/10.1063/1.121809CrossrefGoogle Scholar

  • [59] B.M. Evans, D.W. Schonberger, and P.G. Datskos, “Finite element modelling of micromachined MEMS photon devices”, Proc. SPIE 3878, 253–260 (1999). http://dx.doi.org/10.1117/12.361268CrossrefGoogle Scholar

  • [60] P.G. Datskos, S. Rajic, and I. Datskou, “Detection of infrared photons using the electronic stress in metal-semiconductor cantilever interfaces”, Ultramicroscopy 82, 49–56, (2000). http://dx.doi.org/10.1016/S0304-3991(99)00140-0CrossrefGoogle Scholar

  • [61] P.G. Datskos, “Micromechanical uncooled photon detectors“, Proc. SPIE 3948, 80–93 (2000). http://dx.doi.org/10.1117/12.382109CrossrefGoogle Scholar

  • [62] P.G. Datskos, “Uncooled infrared photon detector and multicolour infrared detection using microoptomechanical sensors“, US Patent No. 5,977,544 (1999). Google Scholar

  • [63] P.G. Datskos, “Method using photo-induced and thermal bending of MEMS sensor”, US Patent No. 6,312,959 (2001). Google Scholar

  • [64] P.G. Datskos, “Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical system”, US Patent No. 6,444,972 (2002). Google Scholar

  • [65] P. G. Datskos, S. Rajic, L. R. Senesac, D. D. Earl, B. M. Evans, J. L. Corbeil, I. Datskou. “Optical readout of uncooled thermal detectors.” Proc. SPIE 4130, 185–197 (2000). http://dx.doi.org/10.1117/12.409842CrossrefGoogle Scholar

  • [66] B.M. Evans, P.G. Datskos, S. Rajic, and I. Datskou. “Optimization of micromachined photon devices”, Proc. SPIE 3778, 62–70 (1999). http://dx.doi.org/10.1117/12.363760CrossrefGoogle Scholar

  • [67] M. Martin, “Microscopic thermal detector optimization through material and geometric selection.” Master’s Thesis, Tennessee Technological University 1–67 (2000). Google Scholar

  • [68] P.G. Datskos, S. Rajic, L.R. Senesac, and I. Datskou, “Fabrication of quantum well microcantilever photon detectors”, Ultramicroscopy 86, 191–206 (2001). http://dx.doi.org/10.1016/S0304-3991(00)00072-3CrossrefGoogle Scholar

  • [69] L.R. Senesac, J.L. Corbeil, S. Rajic, N.V. Lavrik, and P.G. Datskos. “IR imaging using uncooled microcantilever detectors.” Ultramicroscopy 97, 451–458 (2003). http://dx.doi.org/10.1016/S0304-3991(03)00073-1CrossrefGoogle Scholar

  • [70] P.G. Datskos and N.V. Lavrik, “Detectors of merit”, in Encyclopedia of Optical Engineering, edited by R.G. Driggers, pp. 349–357, Marcel Dekker, New York, 2003. Google Scholar

  • [71] P.G. Datskos, N.V. Lavrik, and S. Rajic, “Performance of uncooled microcantilever thermal detectors”, Rev. Sci. Instrum. 75, 1134–1148 (2004). http://dx.doi.org/10.1063/1.1667257CrossrefGoogle Scholar

  • [72] P.G. Datskos, S. Rajic, and N.V. Lavrik, “Performance of uncooled microcantilever thermal detectors”, Proc. SPIE 5721, 136–150 (2005). http://dx.doi.org/10.1117/12.590823CrossrefGoogle Scholar

  • [73] J. Matovic, J. Lamovec, and Z. Djinovic, “Bimaterial infrared detector with efficient suppression of interference from ambient temperature”, Proc. 24th Int. Conf. Microelectr. 349–352 (2004). Google Scholar

  • [74] J. Matovic, ”A simplified method for analysis of mems bimaterial cantilever elements”, Proc. 25th Int. Conf. Microelectr. 1–3 (2006). Google Scholar

  • [75] J. Matovic and Z. Jaksic, “Micromechanical sensors based on lateral and longitudinal displacement of a cantilever sensing element: A comparative performance study”, Proc. SPIE 7362, 73621E (2009). http://dx.doi.org/10.1117/12.821655Google Scholar

  • [76] J. Matovic and Z. Jaksic, “A comparative analyze of fundamental noise in cantilever sensors based on lateral and longitudinal displacement: case of thermal infrared detectors”, Microsys. Technol. 16, 755–763 (2010). http://dx.doi.org/10.1007/s00542-010-1052-6CrossrefGoogle Scholar

  • [77] Z. Djuric, D. Randjelovic, I. Jokic, J. Matovic, and J. Lamovec, “A new approach to IR bimaterial detectors theory”, Infrared Phys. Techn. 50, 51–57 (2007). http://dx.doi.org/10.1016/j.infrared.2006.07.001CrossrefGoogle Scholar

  • [78] D. Grbovic, N.V. Lavrik, P.G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays”, Appl. Phys. Lett. 89, 073118 (2006). http://dx.doi.org/10.1063/1.2337083CrossrefGoogle Scholar

  • [79] N.V. Lavrik, D. Grbovic, S. Rajic, P.G. Datskos, D. Forrai, E. Nelson, J. Devitt, and B. McIntyre, “Uncooled infrared imaging using bimaterial microcantilever arrays”, Proc. SPIE 6206, 62061K (2006). http://dx.doi.org/10.1117/12.666125Google Scholar

  • [80] N.V. Lavrik, R. Archibald, D. Grbovic, S. Rajic, and P.G. Datskos, “Uncooled MEMS IR imagers with optical readout and image processing”, Proc. SPIE 6542, 65421E (2007). http://dx.doi.org/10.1117/12.724346Google Scholar

  • [81] E. Montagner, “Optical readout system for bi-material terahertz sensors”, Master’s Thesis, Naval Postgraduate School 1–60 (2011). Google Scholar

  • [82] D. Grbovic, N.V. Lavrik, S. Rajic, and P.G. Datskos, “Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors”, J. Appl. Phys. 104, 054508 (2008). http://dx.doi.org/10.1063/1.2959574CrossrefGoogle Scholar

  • [83] D. Grbovic, S. Rajic, N.V. Lavrik, and P.G. Datskos, “Progress with MEMS Based UGS (IR/THz)”, Proc. SPIE 6963, 696317 (2008). http://dx.doi.org/10.1117/12.786633CrossrefGoogle Scholar

  • [84] D. Grbovic, “Imaging by detection of infrared photons using arrays of uncooled micromechanical detectors”, Dissertation, Univ. of Tennessee Knoxville 1–129 (2008). Google Scholar

  • [85] D. Grbovic and G. Karunasiri, “Fabrication of Bi-material MEMS detector arrays for THz imaging”, Proc. SPIE 7311, 731108 (2009). http://dx.doi.org/10.1117/12.818317CrossrefGoogle Scholar

  • [86] C. Bolakis, “High terahertz absorbing nanoscale metal films for fabrication of micromechanical bi-material THZ sensors”, Master’s Thesis, Naval Postgraduate School 1–55 (2010). Google Scholar

  • [87] P. Liao, “Design and simulation of a terahertz sensor using finite element modelling”, Master’s Thesis, Naval Postgraduate School 1–67 (2009). Google Scholar

  • [88] F. Alves, D. Grbovic, B. Kearney, and G. Karunasiri. “High sensitivity metamaterial based bi-material terahertz sensor”, Proc. SPIE 8624, 862411 (2013). http://dx.doi.org/10.1117/12.2005272CrossrefGoogle Scholar

  • [89] P.G. Datskos, N.V. Lavrik, S.R. Hunter, S. Rajic, and D. Grbovic, “Infrared imaging using arrays of SiO2 micromechanical detectors”, Optics Lett. 37, 3966–3968 (2012). http://dx.doi.org/10.1364/OL.37.003966Google Scholar

  • [90] D. Grbovic, N.V. Lavrik, S. Rajic, S.R. Hunter, and P.G. Datskos, “Nano-mechanical infrared detectors”, Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers (in press). Google Scholar

  • [91] J. Zhao, “High sensitivity photomechanical MW-LWIR Imaging using an uncooled MEMS microcantilever array and optical readout” Proc. SPIE 5783, 506–513 (2005). http://dx.doi.org/10.1117/12.606485CrossrefGoogle Scholar

  • [92] J. Salerno, “High frame rate imaging using uncooled optical readout photomechanical IR sensor”, Proc. SPIE 6542, 654245 (2007). Google Scholar

  • [93] G. Simelgor, “Microcantilever infrared sensor array”, US Patent No. 7,741,603 (2010). Google Scholar

  • [94] G. Simelgor, “Tuneable microcantilever infrared sensor”, US Patent No. 7,755,049 (2010). Google Scholar

  • [95] M. Erdtmann, “Micromechanical device For IR Sensing”, US Patent No. 7,825,381 (2010). Google Scholar

  • [96] M. Erdtmann, “Noise reduction method for imaging device”, US Patent No. 7,652,250 (2010). Google Scholar

  • [97] G. Jin, “Radiation Detector with Extended Dynamic Range”, US Patent No. 7,705,309 (2010). Google Scholar

  • [98] J. Zhao, “Thermal displacement-based radiation detector of high sensitivity”, US Patent No. 7,705,307 (2010). Google Scholar

  • [99] M. Erdtmann, L. Zhang, and G.I Jin, “Uncooled dual-band MWIR/LWIR optical readout imager”, Proc. SPIE 6940, 694034 (2008). http://dx.doi.org/10.1117/12.777253CrossrefGoogle Scholar

  • [100] M. Erdtmann, L. Zhang, G. Jin, S. Radhakrishnan, G. Simelgor, and J. Salerno, “Optical readout photomechanical imager: from design to implementation”, Proc. SPIE 7298, 729818 (2009). http://dx.doi.org/10.1117/12.818427CrossrefGoogle Scholar

  • [101] S.R. Hunter, “Apparatus Comprising a thermal bimorph with enhanced sensitivity”, US Patent Application No. 20070241635A1 (2007). Google Scholar

  • [102] M. Erdtmann, G. Simelgor, S. Radhakrishnan, L. Zhang, Y. Liu, P. Y. Emelie, and J. Salerno, “Photomechanical imager FPA design for manufacturability”, Proc. SPIE 7660, 766037 (2010). http://dx.doi.org/10.1117/12.853195CrossrefGoogle Scholar

  • [103] L. Zhang, F.P. Pantuso, G. Jin, A. Mazurenko, M. Erdtmann, S. Radhakrishnan, and J. Salerno, “High-speed uncooled MWIR hostile fire indication sensor”, Proc. SPIE 8012, 801219 (2011). http://dx.doi.org/10.1117/12.884591CrossrefGoogle Scholar

  • [104] L. Zhang, M. Erdtmann, S. Radhakrishnan, N. Xue, J. Salerno, S. Yngvesson, A. Gullapali, K. Fu, P. Siqueira, “Realtime terahertz imaging for laser beam profiling and medical imaging”, Proc. SPIE 8716, 8716–29 (2013). Google Scholar

  • [105] http://www.readbag.com/agiltron-pdfs-thz-imager-specs Google Scholar

  • [106] Q. Tong, L. Dong, Y. Zhao, C. Gong, X. Liu, X. Yu, L. Yang, and W. Liu, “Image processing system design for micro-cantilever-based optical readout infrared arrays”, Proc. SPIE 8562, 85621N (2003). http://dx.doi.org/10.1117/12.999331Google Scholar

  • [107] C. Gong, Y. Zhao, L. Dong, M. Hui, X. Yu, and X. Liu. “Short-wave infrared, medium-wave infrared, and long-wave infrared imaging study for optical readout microcantilever array infrared sensing system”. Opt. Eng. 52, 026403 (2013). http://dx.doi.org/10.1117/1.OE.52.2.026403CrossrefGoogle Scholar

  • [108] C. Li, B. Jiao, S. Shi, D. Chen, T. Ye, Q. Zhang, Z. Guo, F. Dong, and Z. Miao, “A novel uncooled substrate-free optical-readable infrared detector: design, fabrication and performance”, Meas. Sci. Technol. 17, 1981–1986 (2006). http://dx.doi.org/10.1088/0957-0233/17/7/042CrossrefGoogle Scholar

  • [109] X. Wang, S. Ma, X. Yu, M. Liu, X. Liu, and Y. Zhao, “IR imaging using a cantilever-based focal plane array fabricated by deep reactive ion etching technique” Appl. Phys. Lett. 91, 054109 (2007). http://dx.doi.org/10.1063/1.2768024CrossrefGoogle Scholar

  • [110] Z. Xiong, Q. Zhang, J. Gao, X. Wu, D. Chen, and B. Jiao “The pressure-dependent performance of a substrate-free focal plane array in an uncooled infrared imaging system”, J. Appl. Phys. 102, 113524 (2007). http://dx.doi.org/10.1063/1.2822333CrossrefGoogle Scholar

  • [111] T. Cheng, Q. Zhang, B. Jiao, D. Chen, and X. Wu, “Optical readout sensitivity of deformed microreflector for uncooled infrared detector: theoretical model and experimental validation”, J. Opt. Soc. Am. A26, 2353–2361 (2009). http://dx.doi.org/10.1364/JOSAA.26.002353CrossrefGoogle Scholar

  • [112] T. Cheng, Q. Zhang, X. Wu, D. Chen, and B. Jiao, “Uncooled infrared imaging using a substrate-free focal-plane array”, Electron Dev. Lett. 29, 1218–1221 (2008). http://dx.doi.org/10.1109/LED.2008.2004568CrossrefGoogle Scholar

  • [113] G. Duan, B. Su, Y. Zhao, X. Wang, H. Sun, C. Zhang, W. Zhao, “Research on bi-material MEMS detector arrays for THz imaging”. Proc. SPIE 8195, 819511 (2012). http://dx.doi.org/10.1117/12.900704CrossrefGoogle Scholar

  • [114] Q. Tong, L. Dong, Y. Zhao, C. Gong, X. Liu, X. Yu, L. Yang, and W. Liu, “Image processing system design for microcantilever-based optical readout infrared arrays”, Proc. SPIE 8562, 85621N (2012) http://dx.doi.org/10.1117/12.999331Google Scholar

  • [115] S. Huang and X. Zhang, “Extension of the Stoney formula for film-substrate systems with gradient stress for MEMS applications”, J. Micromech. Microeng. 16, 382–389 (2006). http://dx.doi.org/10.1088/0960-1317/16/2/024CrossrefGoogle Scholar

  • [116] S. Huang and X. Zhang, “Study of gradient stress in bimaterial cantilever structures for infrared applications”, J. Micromech. Microeng. 17, 1211–1219 (2007). http://dx.doi.org/10.1088/0960-1317/17/7/001CrossrefGoogle Scholar

  • [117] S. Huang, H. Tao, I. Lin, and X. Zhang, “Development of double-cantilever infrared detectors: Fabrication, curvature control and demonstration of thermal detection”, Sensors and Actuators A145–146, 231–240 (2008). http://dx.doi.org/10.1016/j.sna.2007.12.017CrossrefGoogle Scholar

  • [118] I. Lin, Y. Zhang, and X. Zhang, “The deformation of micro-cantilever-based infrared detectors during thermal cycling”, J. Micromech. Microeng. 18, 075012 (2008). http://dx.doi.org/10.1088/0960-1317/18/7/075012CrossrefGoogle Scholar

  • [119] I. Lin, X. Zhang, Y. Zhang, “Thermomechanical behaviour and microstructural evolution of SiNx/Al bimaterial microcantilevers”, J. Micromech. Microeng. 19, 085010 (2009). http://dx.doi.org/10.1088/0960-1317/19/8/085010CrossrefGoogle Scholar

  • [120] H. Torun and H. Urey, “Uncooled thermo-mechanical detector array with optical readout”, Proc. SPIE 5957, 59570O, (2005). http://dx.doi.org/10.1117/12.624593Google Scholar

  • [121] M. Toy, O. Ferhanoglu, H. Torun, and H. Urey, “Uncooled infrared thermo-mechanical detector array: Design, fabrication and testing”, Sensor Actuat. A156, 88–94 (2009). http://dx.doi.org/10.1016/j.sna.2009.02.010CrossrefGoogle Scholar

  • [122] O. Ferhanoglu, M. Toy, and H. Urey, “Parylene-based uncooled thermomechanical array”, Proc. SPIE 7298, 72980H (2009). http://dx.doi.org/10.1117/12.818951Google Scholar

  • [123] K. Ivanova, Tzv. Ivanov, I. W. Rangelow, “Micromachined Arch-type cantilever as high sensitivity uncooled infrared detector”, J. Vac. Sci. Technol. 23, 3153–3157 (2005). http://dx.doi.org/10.1116/1.2134721CrossrefGoogle Scholar

  • [124] I. Rangelow, T. Ivanov, and K. Ivanova, “Microsystem component with a device deformable under the effect of temperature changes”, US Patent No. 8,128,282 (2012). Google Scholar

  • [125] M. Steffanson, K. Gorovoy, V. Ramkiattisak, T. Ivanov, J. Krol, H. Hartmann, and I.W. Rangelow, “ARCH-type micro-cantilever FPA for uncooled IR detection”, Microelectr. Eng. 98, 614–618 (2012). http://dx.doi.org/10.1016/j.mee.2012.04.037CrossrefGoogle Scholar

  • [126] M. Steffanson, T. Ivanov, and I.W. Rangelow, “Methodology for micro-fabricating free standing micromechanical structures for infrared detection”, Proc. IRS2, 105–109 (2013). Google Scholar

  • [127] U. Mizrahi, N. Argaman, S. Elkind, A. Giladi, Y. Hirsh, M. Labilov, I. Pivnik, N. Shiloah, M. Singer, A. Tuito, M. Ben- -Ezra, and I. Shtrichman, “Large-format 17 μm high-end VOx μ-bolometer infrared detector”, Proc. SPIE 8704, 87041H (2013). http://dx.doi.org/10.1117/12.2015653Google Scholar

  • [128] T. Endoh, S. Tohyama, T. Yamazaki, Y. Tanaka, K. Okuyama, S. Kurashina, M. Miyoshi, K. Katoh, T. Yamamoto, Y. Okuda, T. Sasaki, H. Ishizaki, T. Nakajima, K. Shinoda, and T. Tsuchiya, “Uncooled infrared detector with 12 μm pixel pitch video graphics array”, Proc. SPIE 8704, 87041G (2013). http://dx.doi.org/10.1117/12.2013690Google Scholar

  • [129] D. Lohrmann, R. Littleton, C. Reese, D. Murphy, and J. Vizgaitis, “Uncooled long-wave infrared small pixel focal plane array and system challenges”, Opt. Eng. 52, 061305 (2013). http://dx.doi.org/10.1117/1.OE.52.6.061305CrossrefGoogle Scholar

  • [130] T. Lee and J. Shie. “Feasibility study on low-resolution uncooled thermal imagers for home-security applications”, Opt. Eng. 39, 1431–1440 (2000). http://dx.doi.org/10.1117/1.602514CrossrefGoogle Scholar

  • [131] http://www.ulis-ir.com/index.php-infrared-detector=Micro 80P-new Google Scholar

  • [132] http://www.sensorsportal.com/DOWNLOADS/Uncooled_Infrared_Cameras_and_Detectors_Report_sample.pdf Google Scholar

About the article

Published Online: 2013-12-29

Published in Print: 2014-03-01


Citation Information: Opto-Electronics Review, Volume 22, Issue 1, Pages 1–15, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-014-0176-0.

Export Citation

© 2014 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in