Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 22, Issue 3


Heterostructures with self-organized quantum dots of Ge on Si for optoelectronic devices

K. Lozovoy / A. Voytsekhovskiy / A. Kokhanenko / V. Satdarov / O. Pchelyakov
  • National Research Tomsk State University, 36 Lenin Ave., 634050, Tomsk, Russia
  • Institute of Semiconductor Physics, 13 Ac. Lavrientiev Ave., 630090, Novosibirsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Nikiforov
  • National Research Tomsk State University, 36 Lenin Ave., 634050, Tomsk, Russia
  • Institute of Semiconductor Physics, 13 Ac. Lavrientiev Ave., 630090, Novosibirsk, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-29 | DOI: https://doi.org/10.2478/s11772-014-0189-8


In this paper an analysis of tendencies of Ge on Si quantum dots nanoheterostructures’ usage in different optoelectronic devices such as, for example, solar cells and photodetectors of visible and infra-red regions is carried out; a complex mathematical model for calculation of dependency on growth conditions of self-organized quantum dots of Ge on Si grown using the method of molecular beam epitaxy parameters is described. Ways of segregation effect and underlying layers’ influence are considered. It is shown that for realization of good device characteristics quantum dots should have high density, small sizes, uniformity, and narrow size distribution function. The desirable parameters of arrays of square and rectangular quantum dots for device application are attainable under certain growth conditions.

Keywords: Hut-clusters; segregation; multi-layer structures; photodetectors; molecular beam epitaxy

  • [1] A.V. Voitsekhovskii, D.V. Grigor’ev, A.P. Kokhanenko, O.P. Pchelyakov, A.V. Dvurechenskii, and A.I. Nikiforov, “Ge/Si nanoheterostructures with ordered Ge quantum dots for optoelectronic applications”, Russian Physics Journal 53, 943 (2011). http://dx.doi.org/10.1007/s11182-011-9513-7Web of ScienceCrossrefGoogle Scholar

  • [2] K.L. Wang, D. Cha, J. Liu, and C. Chen, “Ge/Si self-assembled quantum dots and their optoelectronic device applications”, Proc. IEEE 95, 1866 (2007). http://dx.doi.org/10.1109/JPROC.2007.900971Web of ScienceCrossrefGoogle Scholar

  • [3] Zh.I. Alferov, “The history and future of semiconductor heterostructures”, Semiconductors 32, 1 (1998). http://dx.doi.org/10.1134/1.1187350CrossrefGoogle Scholar

  • [4] O.P. Pchelyakov, Y.B. Bolkhovityanov, A.V. Dvurechenski, L.V. Sokolov, A.I. Nikiforov, A.I. Yakimov, and B. Voigtländer, “Silicon-germanium nanostructures with quantum dots: Formation mechanisms and electrical properties”, Semiconductors 34, 1229 (2000). http://dx.doi.org/10.1134/1.1325416CrossrefGoogle Scholar

  • [5] A.V. Voitsekhovskii, A.P Kokhanenko, A.G. Korotaev, and S.N. Nesmelov, “Photoelectric characteristics of PtSi-Si Schottky barrier with boron heavily-doped nanolayer”, Proc. SPIE 4413, 387 (2001). http://dx.doi.org/10.1117/12.425461CrossrefGoogle Scholar

  • [6] O.P. Pchelyakov, A.V. Dvurechensky, A.V. Latyshev, and A.L. Aseev, “Ge/Si heterostructures with coherent Ge quantum dots in silicon for applications in nanoelectronics”, Semicond. Sci. Tech. 26, 014027 (2011). http://dx.doi.org/10.1088/0268-1242/26/1/014027CrossrefWeb of ScienceGoogle Scholar

  • [7] O.G. Schmidt, U. Denker, M. Dashiell, N.Y. Jin-Phillipp, K. Eberl, R. Schreiner, H. Gräbeldinger, H. Schweizer, S. Christiansen, and F. Ernst, “Laterally aligned Ge/Si islands: a new concept for faster field-effect transistors”, Mater. Sci. Eng. B89, 101 (2002). http://dx.doi.org/10.1016/S0921-5107(01)00810-8CrossrefGoogle Scholar

  • [8] A.I. Yakimov, A.V. Dvurechenskii, V.V. Kirienko, and A.I. Nikiforov, “Ge/Si quantum-dot metal-oxide-semiconductor field-effect transistor”, Appl. Phys. Lett. 80, 4783(2002). http://dx.doi.org/10.1063/1.1488688CrossrefGoogle Scholar

  • [9] L.K. Nanver, V. Jovanovic, C. Biasotto, J. Moers, J, D. Gruetzmacher, J.J. Zhang, N. Hrauda, M. Stoffel, F. Pezzoli, O.G. Schmidt, L. Miglio, H. Kosina, A. Marzegalli, G. Vastola, G. Mussler, J. Stangl, G. Bauer, J. van der Cingel, and E. Bonera, “Integration of MOSFETs with SiGe dots as stressor material”, Solid-State Electron. 60, 75 (2011). http://dx.doi.org/10.1016/j.sse.2011.01.038Web of ScienceCrossrefGoogle Scholar

  • [10] A.I. Yakimov, A.V. Dvurechenskii, and A.I. Nikiforov, “Germanium Self-Assembled Quantum Dots in Silicon for Nano- and Optoelectronics”, J. Nano- and Optoelectron. 1, 119 (2006). http://dx.doi.org/10.1166/jno.2006.201CrossrefGoogle Scholar

  • [11] R. Wei, N. Deng, H. Dong, M. Ren, L. Zhang, P. Chen, and L. Liu, “Ge quantum-dot polysilicon emitter heterojunction phototransistors for 1.31–1.55 μm light detection”, Mater. Sci. Eng. B147, 187 (2008). http://dx.doi.org/10.1016/j.mseb.2007.08.005CrossrefGoogle Scholar

  • [12] M. Elcurdi, P. Boucaud, and S. Sauvage, “Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots”, Appl. Phys. Lett. 80, 509 (2002). http://dx.doi.org/10.1063/1.1435063CrossrefGoogle Scholar

  • [13] S. Tong, J.L. Liu, J. Wan, and K.L. Wang, “Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate”, Appl. Phys. Lett. 80, 1189 (2002). http://dx.doi.org/10.1063/1.1449525CrossrefGoogle Scholar

  • [14] G. Masini, L. Colace, and G. Assanto, “2.5 Gbit/s poly-crystalline germanium-on-silicon photodetector operating from 1.3 to 1.55 μm”, Appl. Phys. Lett. 82, 2524 (2003). http://dx.doi.org/10.1063/1.1567046CrossrefGoogle Scholar

  • [15] A. Elving, G.V. Hansson, and W.-X. Ni, “SiGe (Ge-dot) heterojunction phototransistor for efficient light detection at 1.3–1.55 μm”, Physica E16, 528 (2003). http://dx.doi.org/10.1016/S1386-9477(02)00634-3CrossrefGoogle Scholar

  • [16] A.I. Yakimov, A.V. Dvurechenskii, V.V. Kirienko and A.I. Nikiforov, “Ge/Si Photodiodes and Phototransistors with Embedded Arrays of Germanium Quantum Dots for Fiber-Optic Communication Lines”, Phys. Solid State 47, 34 (2005). http://dx.doi.org/10.1134/1.1853439CrossrefGoogle Scholar

  • [17] M. Morse, O. Dosunmu, T. Yin, Y. Kang, G. Sarid, E. Ginsburg, R. Cohen, and M. Zadka, “Progress towards competitive Ge/Si photodetectors”, Proc. SPIE 6996, 699614 (2008). http://dx.doi.org/10.1117/12.787034CrossrefGoogle Scholar

  • [18] A. Luque and A. Marti, “Increasing the Efficiency of ideal solar cells by photon induced transitions at intermediate levels”, Phys. Rev. Lett. 78, 5014 (1997). http://dx.doi.org/10.1103/PhysRevLett.78.5014CrossrefGoogle Scholar

  • [19] A.V. Voitsekhovskii, A.P. Kokhanenko, A.S. Petrov, Yu.V. Lilenko, and A.D. Pogrebnyak, “Investigation of radiation defects in electron irradiated Hg1-xCdxTe crystals using positron annihilation”, Crys. Res. Technol. 23, 237 (1988). http://dx.doi.org/10.1002/crat.2170230221CrossrefGoogle Scholar

  • [20] J.-N. Aqua, I. Berbezier, and L. Favre, “Growth and self-organization of SiGe nanostructures”, Physics Reports 522, 59 (2013). http://dx.doi.org/10.1016/j.physrep.2012.09.006CrossrefGoogle Scholar

  • [21] K. Brunner, “Si/Ge nanostructures”, Rep. Prog. Phys. 65, 27 (2002). http://dx.doi.org/10.1088/0034-4885/65/1/202CrossrefGoogle Scholar

  • [22] J. Yu, E. Kasper, and M. Oehme, “1.55 μm resonant cavity enhanced photodiode based on MBE grown Ge quantum dots”, Thin Solid Films 508, 396 (2006). http://dx.doi.org/10.1016/j.tsf.2005.07.323Google Scholar

  • [23] Yu.N. Drozdov, A.V. Novikov, M.V. Shaleev, and D.V. Yurasov, “Study of the transition of the epitaxial Ge film from layer-to-layer to three-dimensional growth in hetero-structures with strained SiGe sublayers”, Semiconductors 44, 519 (2010). http://dx.doi.org/10.1134/S1063782610040196Web of ScienceCrossrefGoogle Scholar

  • [24] D.V. Yurasov, and Yu.N. Drozdov, “Critical Thickness for the Stranski-Krastanov Transition Treated with the Effect of Segregation”, Semiconductors 42, 563 (2008). http://dx.doi.org/10.1134/S1063782608050138Web of ScienceCrossrefGoogle Scholar

  • [25] O. Dehaese, X. Wallart, and F. Mollot, “Kinetic model of element III segregation during molecular beam epitaxy of III–III’–V semiconductor compounds”, Appl. Phys. Lett. 66, 52 (1995). http://dx.doi.org/10.1063/1.114180CrossrefGoogle Scholar

  • [26] C. Ratsch and A. Zangwill, “Equilibrium theory of the Stranski-Krastanov epitaxial morphology”, Surf. Sci. 293, 123 (1993). http://dx.doi.org/10.1016/0039-6028(93)90250-NCrossrefGoogle Scholar

  • [27] V.G. Dubrovskii, N.V. Sibirev, X. Zhang, and R.A. Suris, “Stress-driven nucleation of three-dimensional crystal islands: from quantum dots to nanoneedles”, Cryst. Growth Des. 10, 3949 (2010). http://dx.doi.org/10.1021/cg100495bCrossrefGoogle Scholar

  • [28] X. Zhang, V.G. Dubrovskii, N.V. Sibirev, and X. Ren, “Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates”, Cryst. Growth Des. 11, 5441 (2011). http://dx.doi.org/10.1021/cg201029xCrossrefWeb of ScienceGoogle Scholar

  • [29] A.I. Nikiforov, V.A. Timofeev, S.A. Teys, A.K. Gutakovsky, and O.P. Pchelyakov, “Initial stage growth of GeSi layers and Ge quantum dot formation on GeSi surface by MBE”, Nanoscale Res. Lett. 7, 561 (2012). http://dx.doi.org/10.1186/1556-276X-7-561CrossrefWeb of ScienceGoogle Scholar

  • [30] V.G. Dubrovskii, “Calculation of the Size-Distribution Function for Quantum Dots at the Kinetic Stage of Growth”, Semiconductors 40, 1123 (2006). http://dx.doi.org/10.1134/S1063782606100010CrossrefGoogle Scholar

  • [31] L.V. Arapkina and V.A. Yuryev, “Classification of Ge hut clusters in arrays formed by molecular beam epitaxy at low temperatures on the Si(001) surface”, Physics-Uspekhi 53, 279 (2010). http://dx.doi.org/10.3367/UFNe.0180.201003e.0289CrossrefWeb of ScienceGoogle Scholar

  • [32] K.A. Lozovoy, A.V. Voytsekhovskiy, A.P. Kokhanenko, and V.G. Satdarov, “Comparative analysis of pyramidal and wedge-like quantum dots formation kinetics in Ge/Si(001) system”, Surf. Sci. 619, 1 (2014). http://dx.doi.org/10.1016/j.susc.2013.10.007Web of ScienceCrossrefGoogle Scholar

  • [33] P. Muller and R. Kern, “The physical origin of the two-dimensional towards three-dimensional coherent epitaxial Stranski—Krastanov transition”, Appl. Surf. Sci. 102, 6 (1996). http://dx.doi.org/10.1016/0169-4332(96)00009-8CrossrefGoogle Scholar

  • [34] A.V. Osipov, F. Schmitt, S.A. Kukushkin, and P. Hess., “Stress-driven nucleation of coherent islands: theory and experiment”, Appl. Surf. Sci. 188, 156 (2002). http://dx.doi.org/10.1016/S0169-4332(01)00727-9CrossrefGoogle Scholar

  • [35] M. Kaniewska, O. Engström, A. Karmous, M Oehme, G. Petersson, and E Kasper, “Charge carrier traffic at self-assembled Ge quantum dots on Si”, Solid-State Electron. 83, 99 (2013). http://dx.doi.org/10.1016/j.sse.2013.01.025Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2014-06-29

Published in Print: 2014-09-01

Citation Information: Opto-Electronics Review, Volume 22, Issue 3, Pages 171–177, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-014-0189-8.

Export Citation

© 2014 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in