Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 22, Issue 3

Issues

Beam forming optic aberrations’ impact on maximum range of semiconductor laser based rangefinders

J. Wojtanowski
  • Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Zygmunt
  • Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Traczyk
  • Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Z. Mierczyk
  • Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Jakubaszek
  • Institute of Optoelectronics, Military University of Technology, 2 Sylwestra Kaliskiego Str., 00-908, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-29 | DOI: https://doi.org/10.2478/s11772-014-0191-1

Abstract

Miniature rangefinding modules based on pulsed semiconductor laser technology are becoming more and more popular components of a variety of modern optoelectronics devices where precise, fast and eye-safe range estimation is needed. Current trends associated with minimization of both physical dimensions and cost of such modules lead to the design approach relying on exact meeting the requirements of a given application, concerning the spatial resolution and especially the maximum range. Optical components of a rangefinder cover a substantial part of its cost and determine its overall dimensions, but primarily — the indigenous parameters of the transmitter and receiver trains are crucial for the maximum measurable range. The quantitative analysis of transmitter optics aberrational characteristics impact on signal-to-noise ratio range dependence and thus the maximum range of a laser rangefinder is presented in the paper. Modern optical fabrication technology offers a huge range of solutions, changing in imaging/projecting characteristics which implies the price level as well. Rangefinder optics has a very specific task which sometimes makes it unreasonable to fight for the diffraction limited performance. The article provides the approach how to determine the acceptable level of optical aberrations which still does not degrade the measurable range significantly.

Keywords: laser rangefinder; optical aberrations; semiconductor pulsed laser; optical design

  • [1] W.J. Smith, Modern Optical Engineering, 4th Ed., McGraw -Hill, New York, 2008. Google Scholar

  • [2] A. Rogalski, “History of infrared detectors”, Opto-Electron. Rev. 20, 279–308 (2012). http://dx.doi.org/10.2478/s11772-012-0037-7CrossrefGoogle Scholar

  • [3] R. Fischer, Optical System Design, 2nd Ed., McGraw-Hill, New York, 2008. Google Scholar

  • [4] G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements”, Advances in Optics and Photonics 4, 441–471 (2012). http://dx.doi.org/10.1364/AOP.4.000441CrossrefGoogle Scholar

  • [5] M.C. Amann, T. Boch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement”, Opt. Eng. 40, 10–19 (2001). http://dx.doi.org/10.1117/1.1330700CrossrefGoogle Scholar

  • [6] M. Zygmunt, “Methods of sub-noise signals detection in time-of-flight laser rangefinders”, Ph.D. Dissertation, Military University of Technology, Warsaw, 2002. Google Scholar

  • [7] A. Schilling, H.P. Herzig, L. Stauffer, U. Vokinger, and M. Rossi, “Efficient beam shaping of linear, high-power diode lasers by use of micro-optics”, Appl. Optics 40, 5852–5859 (2001). http://dx.doi.org/10.1364/AO.40.005852CrossrefGoogle Scholar

  • [8] R.N. Bracewell, Fourier Analysis and Imaging, Springer, New York, 2004. Google Scholar

  • [9] R. Navarro, J. Arines, and R. Rivera, “Direct and inverse discrete Zernike transform”, Opt. Express 17, 24269–24281 (2009). http://dx.doi.org/10.1364/OE.17.024269CrossrefGoogle Scholar

  • [10] Y. Yang, Y. Zhao, Z. Yuan, Q. Lijie, L. Shigang, and N. Jingda, “Analysis of the transmittance of laser atmospheric transmission”, Infrared and Laser Engineering 28, 15–20 (1999). Google Scholar

  • [11] L.C. Andrews and R.L. Philips, Laser Beam Propagation Through Random Media, 2nd Ed., SPIE Press, Bellingham, 2005. http://dx.doi.org/10.1117/3.626196CrossrefGoogle Scholar

  • [12] C.J. Willers, Electro-Optical System Analysis. A Radiometry Perspective., SPIE Press, Bellingham, 2013. http://dx.doi.org/10.1117/3.1001964CrossrefGoogle Scholar

  • [13] R. McIntyre, “Multiplication noise in uniform avalanche diodes”, IEEE Trans. Electron Devices 13, 64–168 (1996). Google Scholar

  • [14] The Mathworks, MATLAB, 2007 (ver. 2007a). Google Scholar

  • [15] ZEMAX Development Corporation, ZEMAX, 2008 (ver. 2008). Google Scholar

  • [16] R. Ostrowski, M. Strzelec, J. Marczak, Z. Mierczyk, B. Comanescu, C. Fenic, S.H. Cho, and K.H. Whang, “Eye-safe telemetry module-review, investigations and applications”, Romanian J. Optoelectron. 13, 1–23 (2005). Google Scholar

About the article

Published Online: 2014-06-29

Published in Print: 2014-09-01


Citation Information: Opto-Electronics Review, Volume 22, Issue 3, Pages 152–161, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-014-0191-1.

Export Citation

© 2014 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in