Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 22, Issue 3


Ultra-wide bandwidth wavelength selective couplers based on the all solid multi-core Ge-doped fibre

X. Li / B. Sun / Y. Yu
Published Online: 2014-06-29 | DOI: https://doi.org/10.2478/s11772-014-0193-z


A novel wavelength selective coupler based on the all solid nine-core Ge-doped fibre has been proposed. The wavelength selective coupler is based on the phenomenon of a multi-core coupling. All the cores are made of Ge-doped silica and the index of central core is larger than the outer core. At the fixed fibre length, the different wavelength can be selected. The performances of coupling and propagation characteristics have been numerically investigated by using a full beam propagation method (BPM). Simulation results show that the all solid nine-core Ge-doped fibre can achieve simultaneous shorter coupler length and wideband filtering characteristics. The 0.763 mm and 0.745 mm wavelength selective coupler are proposed to achieve different wavelength division and the bandwidth is up to the 400 nm, and 300 nm, respectively.

Keywords: multi-core fibre; wavelength selective coupler; Ge-doped fibre

  • [1] Y. Yan, J. Toulouse, I. Velchev, and V.R. Slava, “Decoupling and asymmetric coupling in triple-core photonic crystal fibres”, J. Opt. Soc. Am. B25, 1488–1495 (2008). http://dx.doi.org/10.1364/JOSAB.25.001488CrossrefGoogle Scholar

  • [2] D. Dorosz, and M. Kochanowicz, “Model analysis of super-mode generation in active 5-core optical fibre”, Opto-Electron. Rev. 19, 40–45 (2011). http://dx.doi.org/10.2478/s11772-010-0058-zCrossrefGoogle Scholar

  • [3] X. Liu, S. Chandrasekhar, X. Chen, P.J. Winzer, Y. Pan, T.F. Taunay, B. Zhu, M. Fishteyn, M.F. Yan, J.M. Fini, E.M. Monberg, and F.V. Dimarcello, “1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency”, Opt. Express 19, B958–B964 (2011). http://dx.doi.org/10.1364/OE.19.00B958Google Scholar

  • [4] I. Gasulla and J. Capmany, “Microwave Photonics Applications ofMulticore Fibres”, IEEE Photonics J. 4, 877–888 (2012). http://dx.doi.org/10.1109/JPHOT.2012.2199101CrossrefGoogle Scholar

  • [5] B.M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fibre laser”, Appl. Phys. B105, 213–217 (2011). http://dx.doi.org/10.1007/s00340-011-4689-7CrossrefGoogle Scholar

  • [6] Y. Huo, P. Cheo, and G. King, “Fundamental mode operation of a 19-core phase-locked Yb-doped fibre amplifier”, Opt. Express 12, 6230–6239 (2004). http://dx.doi.org/10.1364/OPEX.12.006230CrossrefGoogle Scholar

  • [7] B. Zhu, T.F. Taunay, M.F. Yan, J.M. Fini, M. Fishteyn, E.M. Monberg, and F.V. Dimarcello, “Seven-core multicore fibre transmissions for passive optical network”, Opt. Express 18, 11117–11122 (2012). http://dx.doi.org/10.1364/OE.18.011117CrossrefGoogle Scholar

  • [8] M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “coupled-mode theory and coupled-power theory”, Opt. Express 19, B102–B111 (2011). http://dx.doi.org/10.1364/OE.19.00B102CrossrefGoogle Scholar

  • [9] K. Szaniawska, T. Nasilowski, and T.R. Wolinski, “Simplified coupling power model for fibres fusion”, Opto-Electron. Rev. 17, 193–199 (2009). http://dx.doi.org/10.2478/s11772-009-0002-2CrossrefGoogle Scholar

  • [10] V. Grubsky, D.S. Starodubov, and J. Feinberg, “Wavelength—selective coupler and add-drop multiplexer using long-period fibre gratings”, Opt. Fibre Commun. Conf. 4, 28–30 (2000). Google Scholar

  • [11] D.C. Johnson, K.O. Hill, F. Bilodeau, and S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner”, Electron. Lett. 23, 668–669 (1987). http://dx.doi.org/10.1049/el:19870477CrossrefGoogle Scholar

  • [12] X. Sun, “Wavelength-selective coupling of dual-core photonic crystal fibre with a hybrid light-guiding mechanism”, Opt. Lett. 32, 2484–2486 (2007). http://dx.doi.org/10.1364/OL.32.002484Web of ScienceCrossrefGoogle Scholar

  • [13] J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, “Photonic crystal waveguide directional couplers as wavelength selective optical filters”, Opt. Commun. 230, 387–392 (2004). http://dx.doi.org/10.1016/j.optcom.2003.11.026CrossrefGoogle Scholar

  • [14] M.S. Yataki, D.N. Payne, and M.P. Varnham, “All-fibre polarising beamsplitter”, Electron. Lett. 21, 249–251 (1985). http://dx.doi.org/10.1049/el:19850178CrossrefGoogle Scholar

  • [15] R. Zengerle and O. Leminger, “Narrow-band wavelength-selective directional couplers made of dissimilar single-mode fibres”, J. Lightwave Technol. 5, 1196–1198 (1987). http://dx.doi.org/10.1109/JLT.1987.1075643CrossrefGoogle Scholar

  • [16] B. Malo, F. Bilodeau, K.O. Hill, D.C. Johnson, and J. Albert, “Unbalanced dissimilar-fibre Mach-Zehnder interferometer: application as filter”, Electron. Lett. 25, 1416–1417 (1989). http://dx.doi.org/10.1049/el:19890945CrossrefGoogle Scholar

  • [17] Y. Yan and J. Toulouse, “Polarization dependence of the inter-core coupling in triple-core photonic crystal fibres”, J. Opt. Soc. Am. B26, 762–767 (2009). http://dx.doi.org/10.1364/JOSAB.26.000762CrossrefGoogle Scholar

  • [18] S. Zheng, G. Ren, Z. Lin, and S.S. Jian, “Mode-coupling analysis and trench design for large-mode-area low-cross—talk multicore fibre”, Appl. Opt. 52, 4541–4548 (2013). http://dx.doi.org/10.1364/AO.52.004541CrossrefGoogle Scholar

  • [19] H. Zhou, G. Xia, and Y. Fan “Output characteristics of weak—coupling fibre grating external cavity semiconductor laser”, Opto-Electron. Rev. 13, 27–30 (2005) Google Scholar

  • [20] T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fibre”, Opt. Express 19, 16576–16592 (2011). http://dx.doi.org/10.1364/OE.19.016576CrossrefGoogle Scholar

  • [21] S. Liu, S.G. Li, G.B. Yin, R.P. Feng, and X.Y. Wang, “A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fibre”, Opt. Commun. 285, 1097–1102 (2012). http://dx.doi.org/10.1016/j.optcom.2011.10.031CrossrefGoogle Scholar

  • [22] A. Rizea “Design technique for all-dielectric non-polarizing beam splitter plate”, Opto-Electron. Rev. 20, 96–99 (2012). http://dx.doi.org/10.2478/s11772-012-0012-3Web of ScienceCrossrefGoogle Scholar

  • [23] Y. Tottori, T. Kobayashi, and M. Watanabe, “Low loss optical connection module for seven-core multicore fibre and seven single-mode fibres”, IEEE Photonics Tech. L. 24, 1926–1928 (2012). http://dx.doi.org/10.1109/LPT.2012.2219305Web of ScienceCrossrefGoogle Scholar

  • [24] J. Sakaguchi, W. Klaus, B. J. Puttnam, J. M. D. Mendinueta, Y. Awaji, N. Wada, Y. Tsuchida, K. Maeda, M. Tadakuma, K. Imamura, R. Sugizaki, T. Kobayashi, Y. Tottori, M. Wa- tanabe, and R.V. Jensen, “19-core MCF transmission system using EDFA with shared core pumping coupled via free—space optics”, Opt. Express 22, 90–95 (2014). http://dx.doi.org/10.1364/OE.22.000090CrossrefGoogle Scholar

About the article

Published Online: 2014-06-29

Published in Print: 2014-09-01

Citation Information: Opto-Electronics Review, Volume 22, Issue 3, Pages 166–170, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-014-0193-z.

Export Citation

© 2014 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in