Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
See all formats and pricing
More options …
Volume 22, Issue 3


ATLAS simulation of a laser diode for free space optical communication (FSOC) in mid-infrared spectral region

  • Department of Electronics and Instrumentation Engineering, Faculty of Engineering and Technology, MJP Rohilkhand University, Bareilly, 243 006, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Chakrabarti
  • Centre for Research in Microelectronics (CRME), Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi, 221 005, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-29 | DOI: https://doi.org/10.2478/s11772-014-0194-y


In this paper, simulation studies on an N+-InAs0.61Sb0.13P0.26/n0-InAs0.97Sb0.03/P+-InAs0.61Sb0.13P0.26 double heterostructure laser diode suitable for use as a source in a free space optical communication system at 3.7 μm at room temperature has been presented. The device structure has been characterized in terms of energy band diagram, electric field profile, and carrier concentration profile using ATLAS simulation tool from Silvaco. The current-voltage characteristics of the structure have been estimated taking into account the degeneracy effect. The results of simulation have been validated by the reported experimental results.

Keywords: ATLAS; free space optical communication; laser diode; mid-infrared; simulation

  • [1] S. Narasimha Prasad, “Optical communications in the mid-wave IR spectral band”, J. Opt. Fiber Commun. Rep. 2, 558–602 (2005). http://dx.doi.org/10.1007/s10297-005-0057-xCrossrefGoogle Scholar

  • [2] T.N. Danilova, A.N. Imenkov, V.V. Sherstnev, and Yu.P. Yakovlev, “InAsSb/InAsSbP double heterostructure lasers emitting at 3–4 μm: Part-I”, Semiconductors 34, 1343–1350 (2000). http://dx.doi.org/10.1134/1.1325437CrossrefGoogle Scholar

  • [3] T. Ashley, “Type-I InSb-based mid-infrared diode lasers”, Phil. Trans. R. Soc. Lond. A359, 475–488 (2001). http://dx.doi.org/10.1098/rsta.2000.0737CrossrefGoogle Scholar

  • [4] M. Yin, A. Krier, S. Krier, R. Jones, and P. Carrington, “Mid-infrared diode lasers for free space optical communications”, Proc. SPIE 6399, 63990C1–C6 (2006). Google Scholar

  • [5] A. Krier, M. Yin, V. Smirnov, P. Batty, P.J. Carrington, V. Solovev, and V. Sherstnev, “Development of room temperature LED and lasers for the mid-infrared spectral region”, Phys. Stat. Ssol. A 205, 129–143 (2008). http://dx.doi.org/10.1002/pssa.200776833CrossrefGoogle Scholar

  • [6] Silvaco Inc., ATLAS user’s manual-A device simulator software, www.silvaco.com, 2005. Google Scholar

  • [7] B.L. Sharma and R.K. Purohit, Semiconductor Heterojunctions, Pergamon Press, Oxford, 1974. Google Scholar

  • [8] A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-Gap Semiconductor Photodiode, SPIE Press, Bellingham, 2000. Google Scholar

  • [9] E.R. Gertner, D.T. Cheung, A.M. Andrews, and J.T. Longo, “Liquid phase epitaxial growth of InAsxSbyP1−x−y layers on InAs”, J. Electron. Mater. 6, 163–172 (1977). http://dx.doi.org/10.1007/BF02660381CrossrefGoogle Scholar

  • [10] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, vol.-2, World Scientific, Singapore, 1996. http://dx.doi.org/10.1142/2046-vol2CrossrefGoogle Scholar

About the article

Published Online: 2014-06-29

Published in Print: 2014-09-01

Citation Information: Opto-Electronics Review, Volume 22, Issue 3, Pages 147–151, ISSN (Online) 1896-3757, DOI: https://doi.org/10.2478/s11772-014-0194-y.

Export Citation

© 2014 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in