Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 23, Issue 1

Issues

Aerial thermography from low-cost UAV for the generation of thermographic digital terrain models

S. Lagüela
  • Corresponding author
  • Applied Geotechnologies Research Group, University of Vigo, Lab 22, ETSE Minas, Campus Universitario LagoasMarcosende, 36310 Vigo, Pontevedra, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L. Díaz−Vilariño
  • Applied Geotechnologies Research Group, University of Vigo, Lab 22, ETSE Minas, Campus Universitario LagoasMarcosende, 36310 Vigo, Pontevedra, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Roca
  • Applied Geotechnologies Research Group, University of Vigo, Lab 22, ETSE Minas, Campus Universitario LagoasMarcosende, 36310 Vigo, Pontevedra, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ H. Lorenzo
  • Applied Geotechnologies Research Group, University of Vigo, Lab 22, ETSE Minas, Campus Universitario LagoasMarcosende, 36310 Vigo, Pontevedra, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-27 | DOI: https://doi.org/10.1515/oere-2015-0006

Abstract

Aerial thermography is performed from a low−cost aerial vehicle, copter type, for the acquisition of data of medium−size areas, such as neighbourhoods, districts or small villages. Thermographic images are registered in a mosaic subsequently used for the generation of a thermographic digital terrain model (DTM). The thermographic DTM can be used with several purposes, from classification of land uses according to their thermal response to the evaluation of the building prints as a function of their energy performance, land and water management. In the particular case of buildings, apart from their individual evaluation and roof inspection, the availability of thermographic information on a DTM allows for the spatial contextualization of the buildings themselves and the general study of the surrounding area for the detection of global effects such as heat islands.

Keywords : aerial platform; infrared thermography; thermographic DTM; land uses; terrain classification

References

  • 1. T. Taylor, J. Counsell, and S. Gill, “Energy efficiency is more than skin deep: Improving construction quality control in new−build housing using thermography”, Energ. Buildings 66, 222-231 (2013).Web of ScienceCrossrefGoogle Scholar

  • 2. F. Asdrubali, G. Baldinelli, and F. Bianchi, “A quantitative methodology to evaluate thermal bridges in buildings”, Appl. Energ. 97, 365-373 2012.Web of ScienceCrossrefGoogle Scholar

  • 3. E. Grinzato, N. Ludwig, G. Cadelano, M. Bertucci, M. Gargano, and P. Bison, “Infrared thermography for moisture detection: a laboratory study and in−situ test”, Mater. Eval. 69, 97-104 (2011).Google Scholar

  • 4. S. Chudzik, “Thermal diffusivity measurement of insulating material using infrared thermography”, Opto−Electron. Rev. 20, 40-46 2012.Web of ScienceGoogle Scholar

  • 5. P. Bison and E. Grinzato, “IR thermography applied to the assessment of thermal conductivity of building materials”, in 32th Thermosense, Orlando, 2010.Google Scholar

  • 6. P. Fokaides and S. Kalogirou, “Application of infrared thermography for the determination of the overall heat transfer coefficient (U−value) in building envelopes”, Appl. Energ. 88, 4358-4365 (2011).CrossrefWeb of ScienceGoogle Scholar

  • 7. A. Bortolin, G. Cadelano, G. Ferrarini, and P. Bison, “Thermal performance measurement of the building envelope by infrared thermography”, AITA Conference, Torino, 2013.Google Scholar

  • 8. S. Lagüela, L. Díaz−Vilariño, J. Martínez, and J. Armesto, “Automatic thermographic and RGB texture of as−built BIM for energy rehabilitation purposes”, Automat. Constr. 31, 230-240 (2013).Web of ScienceGoogle Scholar

  • 9. Y. Ham and M. Golparvar−Fard, “EPAR: Energy Performance Augmented Reality models for identification of building energy performance deviations between actual measurements and simulation results”, Energ. Buildings 63, 15-28 (2013).CrossrefGoogle Scholar

  • 10. M. Scaioni, E. Rosina, L. Barazzetti, M. Previtali, and V. Redaelli, “High−resolution texturing of building façades with thermal images”, in 34th Thermosense, Baltimore, 2012.Google Scholar

  • 11. L. Hoegner and U. Stilla, “Automatic generation of façade textures from terrestrial thermal infrared image sequences”, QIRT, Bordeaux, 2014.Google Scholar

  • 12. F. Agüera, F. Aguilar, and M. Aguilar, “Using texture analysis to improve per−pixel classification of very high resolution images for mapping plastic greenhouses”, ISPRS J. Photogrammetry and Remote Sensing 63, 635-646 (2008).Web of ScienceGoogle Scholar

  • 13. J.E. Nichol and P. Hang To, “Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping”, ISPRS J. Photogrammetry and Remote Sensing 74, 153-162 (2012).Google Scholar

  • 14. N. Haala, M. Cramer, F. Weimer, and M. Trittler, “Performance test on UAV based photogrammetric data collection”, IAPRS 38 (1/C22) 7-12 (2011).Google Scholar

  • 15. F. Neitzel and J. Klonowski, “Mobile 3D mapping with a low−cost UAV system”, IAPRS 38 (1/C22), 39-44 (2011).Google Scholar

  • 16. M. Previtali, L. Barazzetti, and R. Brumana, “Thermographic analysis from UAV platforms for energy efficiency retrofit applications”, J. Mobile Multimedia 9, 66-82 (2013).Google Scholar

  • 17. H. Xiang and L. Tian, “Development of a low−cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV)”, Biosyst. Eng. 108, 174-190 (2011).Google Scholar

  • 18. M. Aguilar, F. Bianconi, F. Aguilar, and I. Fernández, “Object−based greenhouse classification from GeoEye−1 and WorldView−2 stereo imagery”, Remote Sensing 6, 3554-3582 (2014).Google Scholar

  • 19. Wiki Mikrokopter: mikrokopter.de. Last access: 04/04/2013.Google Scholar

  • 20. D. Roca, S. Lagüela, L. Díaz−Vilariño, J. Armesto, and P. Arias, “Low−cost aerial unit for outdoor inspection of building façades”, Automat. Constr. 36, 128-135 (2013).Web of ScienceGoogle Scholar

  • 21. S. Lagüela, H. González−Jorge, J. Armesto, and J. Herráez, “High performance grid for the metric calibration of thermographic cameras”, Measurement Science and Technology 23, 9 (2012).Google Scholar

  • 22. E. Coll, J. Martínez, and J. Herráez, “The determination matrix size for videogrammetry correlation”, Conf. Advances in Signal Processing, Robotics and Communications, pp. 56-59, Malta, 2001.Google Scholar

  • 23. S. Lagüela, J. Armesto, P. Arias, and J. Herráez, “Automation of thermographic 3D modelling through image fusion and image matching techniques”, Automat. Constr. 27, 24-31 (2012).Web of ScienceGoogle Scholar

  • 24. CIE, Colorimetry, CIE Publication 15.2, 2nd Ed, pp. 19-20, 56-58, Vienna, 1986.Google Scholar

  • 25. Instituto Geográfico Nacional. Centro Nacional de Información Geográfica: www.ign.es. Last access: 09/07/2014. Google Scholar

About the article

Published Online: 2015-01-27

Published in Print: 2015-03-01


Citation Information: Opto-Electronics Review, Volume 23, Issue 1, Pages 78–84, ISSN (Online) 1896-3757, ISSN (Print) 1230-3402, DOI: https://doi.org/10.1515/oere-2015-0006.

Export Citation

© 2015 SEP, Warsaw.Get Permission

Comments (0)

Please log in or register to comment.
Log in