Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 23, Issue 4

Issues

Light propagation mechanism switching in a liquid crystal infiltrated microstructured polymer optical fibre

K.A. Rutkowska / K. Milenko / O. Chojnowska
  • Faculty of New Technologies and Chemistry, Military University of Technology, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. Dąbrowski
  • Faculty of New Technologies and Chemistry, Military University of Technology, ul. Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T.R. Woliński
Published Online: 2015-10-07 | DOI: https://doi.org/10.1515/oere-2015-0034

Abstract

In this work studies on propagation properties of a microstructured polymer optical fibre infiltrated with a nematic liquid crystal are presented. Specifically, the influence of an infiltration method on the LC molecular alignment inside fibre air-channels and, thus, on light guidance is discussed. Switching between propagation mechanisms, namely the transition from modified total internal reflection (mTIR) to the photonic bandgap effect obtained by varying external temperature is also demonstrated.

Keywords: photonic crystal fibres; liquid crystals; microstructured polymer optical fibres; photonic bandgap; photonic liquid crystal fibres

References

  • 1. F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibres: Properties and Applications, Springer, 2007.Google Scholar

  • 2. M. Large, Microstructured Polymer Optical Fibres, Springer, 2007.Google Scholar

  • 3. A. Argyros, “Microstructured polymer optical fibres”, J. Lightwave Technol. 27, 1571-1579 (2009).CrossrefGoogle Scholar

  • 4. M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R. McPhedran, and C.M. de Sterke, “Microstructured polymer optical fibre”, Opt. Expr. 9, 319-327 (2001).Google Scholar

  • 5. J. Anthony, R. Leonhardt, A. Argyros, and M.C. Large, “Characterization of a microstructured Zeonex terahertz fibre”, J. Opt. Soc. Amer. B 28, 1013-1018 (2011).Google Scholar

  • 6. T. Woliński, K. Mileńko, M. Tefelska, K. Rutkowska, A. Domański, S. Ertman, K. Orzechowski, M. Sierakowski, O. Chojnowska, and R. Dąbrowski, “Liquid crystals and polymer-based photonic crystal fibres”, Mol. Cryst. Liq. Cryst. 594, 55-62 (2014).Google Scholar

  • 7. G. Emiliyanov, J.B. Jensen, O. Bang, P.E. Hoiby, L.H. Pedersen, E.M. Kjær, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fibre”, Opt. Lett. 32, 460-462 (2007).Web of ScienceCrossrefGoogle Scholar

  • 8. G. Emiliyanov, P.E. H øiby, L.H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibres”, Sensors 13, 3242-3251 (2013).Web of ScienceCrossrefGoogle Scholar

  • 9. M.A. van Eijkelenborg, A. Argyros, and S.G. Leon-Saval, “Polycarbonate hollow-core microstructured optical fibre”, Opt. Lett. 33, 2446-2448 (2008).CrossrefWeb of ScienceGoogle Scholar

  • 10. A. Argyros, M.A. van Eijkelenborg, M.C. Large, and I.M. Bassett, “Hollow-core microstructured polymer optical fi- bre”, Opt. Lett. 31, 172-174 (2006).CrossrefGoogle Scholar

  • 11. M.K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and D.J. Webb, “Measurements of polarimetric sensitivity to hydrostatic pressure, strain and temperature in birefringent dual-core microstructured polymer fibre”, Opt. Expr. 18, 12076-12087 (2010).Google Scholar

  • 12. M.C. Large, J. Moran, and L. Ye, “The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF)”, Meas. Scien. Techn. 20, 034014 (2009).Google Scholar

  • 13. D.J. Webb, K. Kalli, C. Zhang, M. Komodromos, A. Argy- ros, M. Large, G. Emiliyanov, O. Bang, and E. Kjaer, “Temperature sensitivity of Bragg gratings in PMMA and TOPAS microstructured polymer optical fibres”, Proc. SPIE 6990, 69900L (2008).Google Scholar

  • 14. W. Yuan, L. Wei, T.T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibres”, Opt. Expr. 17, 19356-19364 (2009).Google Scholar

  • 15. T. Martynkien, P. Mergo, and W. Urbanczyk, “Sensitivity of birefringent microstructured polymer optical fibre to hydrostatic pressure”, IEEE Phot. Techn. Lett. 25, 1562-565 (2013).CrossrefGoogle Scholar

  • 16. I.P. Johnson, W. Yuan, A. Stefani, K. Nielsen, H.K. Rasmus- sen, L. Khan, D.J. Webb, K. Kalli, and O. Bang, “Optical fibre Bragg grating recorded in TOPAS cyclic olefin copoly- mer”, Electron. Lett. 47, 271-272 (2011).CrossrefGoogle Scholar

  • 17. H. Dobb, D.J. Webb, K. Kalli, A. Argyros, M.C. Large, and M.A. van Eijkelenborg, “Continuous wave ultraviolet light-induced fibre Bragg gratings in few-and single-mode microstructured polymer optical fibres”, Opt. Lett. 30, 3296-3298 (2005).CrossrefGoogle Scholar

  • 18. A. Stefani, W. Yuan, C. Markos, and O. Bang, “Narrow bandwidth 850-nm fibre Bragg gratings in few-mode polymer optical fibres”, IEEE Phot. Techn. Lett. 23, 660-662 (2011).Google Scholar

  • 19. C. Markos, W. Yuan, K. Vlachos, G.E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dualcore microstructured polymer optical fibres”, Opt. Expr. 19, 7790-798 (2011).Google Scholar

  • 20. S. Baumer, Handbook of plastic optics, John Wiley & Sons, 2011.Google Scholar

  • 21. K. Obuchi, M. Komatsu, and K. Minami, “High performance optical materials cyclo olefin polymer Zeonex”, Proc. SPIE 66711, 66711I-66711I-9 (2007).Google Scholar

  • 22. S. Cerqueira Jr, F. Luan, C. Cordeiro, A. Geo ge, and J. Knight, “Hybrid photonic crystal fibre”, Opt. Expr.14, 926-931 (2006).Google Scholar

  • 23. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres”, Opt. Expr. 11, 2589-2596 (2003).PubMedGoogle Scholar

  • 24. T. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres”, Meas. Scien. Techn. 17, 985 (2006).Google Scholar

  • 25. L. Wei, T.T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fibre filled with liquid crystal”, Appl. Phys. Lett. 96, 241104 (2010).Web of ScienceCrossrefGoogle Scholar

  • 26. L. Wei, T.T. Alkeskjold, and A. Bjarklev, “Electrically tunable bandpass filter using solid-core photonic crystal fibres filled with multiple liquid crystals”, Opt. Lett. 35, 1608-610 (2010).Web of ScienceCrossrefGoogle Scholar

  • 27. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T.T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fibre devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibres”, Appl. Opt. 48, 497-503 (2009).CrossrefGoogle Scholar

  • 28. T. Woliński, M. Tefelska, K. Mileńko, A. Siarkowska, D. Budaszewski, A. Domański, S. Ertman, K. Orzechowski, K. Rutkowska, and M. Sierakowski, “Photonic liquid crystal fibres with polymers”, Acta Phys. Polon. A 124, 613-616 (2013).Google Scholar

  • 29. K. Thingujama, S. Sarkara, B. Choudhurya, and A. Bhattacharjeea, “Effect of temperature on the refractive indices of liquid crystals and validation of a modified four-parameter model”, Acta Phys. Polon. A 122, 754 (2012).Google Scholar

  • 30. N. Litchinitser, A. Abeeluck, C. Headley, and B. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides”, Opt. Lett. 27, 1592-1594 (2002).PubMedCrossrefGoogle Scholar

  • 31. A. Abeeluck, N. Litchinitser, C. Headley, and B. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides”, Opt. Expr. 10, 1320-333 (2002).PubMedGoogle Scholar

  • 32. J. Sun, C. Chan, and N. Ni, “Analysis of photonic crystal fibres infiltrated with nematic liquid crystal”, Opt. Commun. 278, 66-70 (2007).CrossrefGoogle Scholar

  • 33. Y. Zhang, L. He, H. Ji, S. Yang, M. Chen, and S. Xie, “Tunable attenuator based on polymer microstructured optical fibres”, Optoelectr. Lett. 3, 47-49 (2007). Google Scholar

About the article

Published Online: 2015-10-07

Published in Print: 2015-12-01


Citation Information: Opto-Electronics Review, Volume 23, Issue 4, Pages 252–258, ISSN (Online) 1896-3757, ISSN (Print) 1230-3402, DOI: https://doi.org/10.1515/oere-2015-0034.

Export Citation

© 2015.Get Permission

Comments (0)

Please log in or register to comment.
Log in