Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek

Open Access
Online
ISSN
1896-3757
See all formats and pricing
More options …
Volume 23, Issue 4

Issues

Synthesis and characterization of YAG:Ce phosphors for white LEDs

V. Tucureanu
  • Corresponding author
  • National Institute for Research and Development in Microtechnologies, IMT Bucharest 126A Erou Iancu Nicolae Str., code 077190 Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Matei
  • National Institute for Research and Development in Microtechnologies, IMT Bucharest 126A Erou Iancu Nicolae Str., code 077190 Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A.M. Avram
  • National Institute for Research and Development in Microtechnologies, IMT Bucharest 126A Erou Iancu Nicolae Str., code 077190 Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-07 | DOI: https://doi.org/10.1515/oere-2015-0038

Abstract

Worldwide commercial interest in the production of cerium doped yttrium aluminium garnet (YAG:Ce) phosphors is reflected in the widespread use of white light emitting devices. Despite of the fact that YAG:Ce is considered a “cool phosphor” it is the most important in white LED technology. This article reviews the developed techniques for producing phosphors with superior photoluminescence efficiency, including solid-state reaction, sol-gel and (co)precipitation methods. Also, by co-doping with rare earth elements, a red/blue shift is reached in the spectrum. The characteristics of YAG:Ce phosphors are investigated because the properties of the phosphors are strongly influenced by the synthesis routes and the sintering temperature treatment. After the phase analysis, morphology and emission studies of the phosphors there may be seen the conditions when the transition from the amorphous phase to the crystalline phase appears, when luminescent properties are influenced by the crystalline form, purity, average size of the particles, co-doping and so on.

Keywords: YAG:Ce; phosphor; solid-state; sol-gel; (co)precipitation

References

  • 1. M. Cates, S. Allison, Phosphor Thermometry, OAK Ridge National Laboratory, US Departament of Energy, http://web.ornl.gov/sci/phosphors/Pdfs/tutorial.pdf. Google Scholar

  • 2. P. Rai, M.K. Song, H.M. Song, J.H. Kim, Y.S. Kim, I.H. Lee, and Y.T. Yu, “Synthesis, growth mechanism and photo-luminescence of monodispersed cubic shape Ce doped YAG nanophosphor”, Ceram. Int., 38, 235-242 (2012) doi:10. 1016/j.ceramint.2011.06.057.CrossrefGoogle Scholar

  • 3. R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, “Photoluminescence properties of YAG:Ce3+,Pr3+ phosphors synthesized via the Pechini method for white LEDs”, J. Nanopart. Res. 14, 886, 1-13 (2012) doi: 10.1007/ s11051 -012-0886-5.CrossrefGoogle Scholar

  • 4. S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, and M. Nakatsuka, “Preparation and optical properties of transparent Ce:YAG ceramics for high power white LED” in IUMRS-ICA 2008 Symposium, “AA. Rare-earth related material processing and functions”, IOP Conf. Series: Mater. Sci. Eng. 1, 012031 (2009) doi:10.1088/1757-8981/1/1/012031.CrossrefGoogle Scholar

  • 5. A.A. Setlur, “Phosphors for LED-based solid-state lighting”, The Electrochemical Society Interface 16, 32-36 (2009), http://www.electrochem.org/dl/interface/wtr/wtr09/wtr09_p032-036.pdf. Google Scholar

  • 6. K.V.K. Gupta, A. Muley, P. Yadav, C.P. Joshi, and S.V. Moharil, “Combustion synthesis of YAG:Ce and related phosphors”, Appl. Phys. B, 105, 479-484 (2011) doi: 10. 1007/s00340-011-4685-y.CrossrefGoogle Scholar

  • 7. C.A. Geiger, “Garnet: A key phase in nature, the laboratory, and technology”, Elements 9, 447-452, (2013) doi: 10.2113/ gselements.9.6.447.CrossrefGoogle Scholar

  • 8. C. Wu, A. Luo, G. Du , X. Qin, and W. Shi, “Synthesis and luminescent properties of nonaggregated YAG:Ce3+ phos- phors via the molten salt synthesis method”, Mat. Sci. Semicon. Proc. 16, 679-685 (2013) http://dx.doi.org/10.1016/j.mssp.2012.12.008. CrossrefGoogle Scholar

  • 9. M. Faheem and K. Lynn, “Structural and thermal properties of Tb, Ce Doped Y2.97Gd0.03Al2Ga3O12 single crystals”, American J. Anal. Chem. 5, 695-700 (2014), http://dx.doi.org/10.4236/ajac.2014.511078. Google Scholar

  • 10. P.J. Yadav, C.P. Joshi, and S.V. Moharil, “Combustion synthesis of multicomponent ceramic phosphors for solid state lighting”, Int. J. of Self-Propagating High-Temperature Synthesis, 21, 1, 32-37 (2012) doi: 10.3103/S1061386212010 13X.CrossrefGoogle Scholar

  • 11. H.K. Yang, H.M. Noh, and J.H. Jeong, “Low temperature synthesis and luminescence investigations of YAG:Ce, Eu nanocomposite powder for warm white light-emitting diode”, Solid. State Sci., 27, 43-46 (2014) http://dx.doi.org/ 10.1016/j.solidstatesciences.2013.11.007.CrossrefGoogle Scholar

  • 12. O. Milosevic, L. Mancic, M.E. Rabanal, J.M. Torralba, B. Yang, and P. Townsend, “Structural and luminescence properties of Gd2O3:Eu3+ and Y3Al5O12:Ce3+ phosphor particles synthesized via aerosol”, J. Electrochem. Soc. 152, 9, G707-G713 (2005).Google Scholar

  • 13. Y.Pan, M.Wu, and Q.Su, “Tailored photoluminescence of YAG:Ce phosphor through various methods”, J. Phys. Chem. Solids, 65, 845-850 (2004) doi:10.1016/jpcs.2003.08.018.CrossrefGoogle Scholar

  • 14. H.S. Janga, W.B. Ima, D.C. Leeb, D.Y. Jeona, and S.S. Kim, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs”, J. Lumin. 126, 371-377 (2007) doi:10.1016/j.jlumin.2006.08.09CrossrefGoogle Scholar

  • 15. S. Chawla, T. Roy, K. Majumder, and A. Yadav “Red enhanced YAG:Ce, Pr nanophosphor for white LEDs”, J. Exp. Nanosci. 1-9 (2012) doi:10.1080/17458080.2012.714481CrossrefGoogle Scholar

  • 16. R.A. Hansel, S.W. Allison, and D.G. Walker, “Temperature dependent fluorescence of Ce-doped garnets for use as ther- mographic phosphors” (2008) http://telab.vuse.vanderbilt.edu/docs/hansel08-MRS.pdf Google Scholar

  • 17. K. Toda, “New processing of LED phosphors”, Trans. Electrical And Electronic Materials 13, 225-228 (2012) doi: http://dx.doi.org/10.4313/TEEM.2012.13.5.225.CrossrefGoogle Scholar

  • 18. A. Saat, H. Harun, and Z. Hamzah, “Synthesis and characterization of YAG:Ce prepared by solid state reaction method”, Malaysian J. Anal. Sci. 15, 1, 101-105 (2011).Google Scholar

  • 19. S.C. Huang, J.K. Wu, and W.J. Hsu, “Particle size effect on the packaging performance of YAG:Ce phosphors in white LEDs”, Int. J. Appl. Ceram. Technol. 6, 465-469 (2009).CrossrefGoogle Scholar

  • 20. C.S. Chou, C.Y. Wu, C.H. Yeh, R.Y. Yang, and J.H. Chen, “The optimum conditions for solid-state-prepared (Y3-xCex) Al5O12 phosphor using the Taguchi method”, Adv. Powder Technol. 23, 97-103 (2012) doi:10.1016/j.apt.2010.12.016.CrossrefGoogle Scholar

  • 21. C.W. Won, H.H. Nersisyan, H.I. Won, J.H. Lee, and K.H. Lee, “Eficient solid-state route for the preparation of spherical YAG:Ce phosphor particles”, J. Alloy. Compd. 509, 2621-2626 (2011) doi:10.1016/j.jallcom.2010.11.143.CrossrefGoogle Scholar

  • 22. C.C. Lin, Y.S. Zheng, H.Y. Chen, C.H. Ruan, G.W. Xiao, and R.S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with yellow/red phosphors”, J. Electrochem. Soc. 157, H900-H903 (2010).Google Scholar

  • 23. Y. Pan, M. Wu, and Q. Su, “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor”, Mat. Sci. Eng., 106, 251-256 (2004) doi:10.1016/j.mseb. 2003.09.031.CrossrefGoogle Scholar

  • 24. Y.S. Lin, and R.S. Liu, “Chemical substitution effects of Tb3+ in YAG:Ce phosphors and enhancement of their emission intensity using flux combination”, J. Lumin. 122-123, 580-582 (2007) doi:10.1016/j.jlumin.2006.01.230.CrossrefGoogle Scholar

  • 25. M. Upasani, B. Butey, and S.V. Moharil, “Luminescence studies on lanthanide ions (Gd3+, Tb3+) doped YAG:Ce phosphors by combustion synthesis”, IOSR-JAP 6, 28-33 (2014) www.iosrjournals.orgGoogle Scholar

  • 26. D. Michalik, M. Sopicka-Lizer, J. Plewa, and T. Pawlik, “Application of mechanochemical processing to synthesis of YAG:Ce garnet powder”, Archives Of Metallurgy and Materials 56, 1257-1264 (2011).Google Scholar

  • 27. K. Zhang, H. Liu, Y. Wu, and W. Hu, “Synthesis of (Y, Gd)3Al5O12:Ce nanophosphor by co-precipitation method and its luminescence behavior”, J. Mater. Sci. 42, 9200-9204 (2007) doi: 10.1007/s10853-007-1913-2.CrossrefGoogle Scholar

  • 28. Z. Na, W. Dajian, L. Lan, M. Yanshuang, Z. Xiaosong, and M. Nan, “YAG:Ce Phosphors for WLED via Nano-Pesudo-boehmite Sol-Gel Route”, J. Rare Earth 24, 294-297 (2006).Google Scholar

  • 29. Z. Le, L. Zhou, Z. Jinzhen, Y. Hao, H. Pengde, C. Yan, and Z. Qitu, “Citrate sol-gel combustion preparation and photo-luminescence properties of YAG:Ce phosphors”, J. Rare Earth 30, 289-296 (2012) doi: 10.1016/S1002-0721(12) 60040-4.CrossrefGoogle Scholar

  • 30. H. Shi, C. Zhu, J. Huang, J. Chen, D. Chen, W. Wang, F. Wang, Y. Cao, and X. Yuan, “Lumine scence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances”, Opt. Mater. Ex- press 4, 449-655 (2014) doi:10.1364/OME.4.000649CrossrefGoogle Scholar

  • 31. A.B. Munoz Garcia, “First-principles studies on Ce-doped YAG (Y3Al5O12), Codoping, antisite defects and Ce3+ 4f-5d transitions”, Autonomous University of Madrid, Faculty of Science, Department of Chemistry, Dissertation Thesis (2011) https://repositorio.uam.es/bitstream/handle/10486/6278/38176_mu%C3%B1oz_garcia_ana_belen.pdf?sequence=1 Google Scholar

  • 32. N. Pradal, G. Chadeyron, A. Potdevin, J. Deschamps, and R. Mahioub, “Elaboration and optimization of Ce-doped Y3Al5O12 nanopowder dispersions”, J. Eur. Ceram. Soc. 33, 1935-1945 (2013) http://dx.doi.org/10.1016/j.jeurceramsoc.2013.02.004 CrossrefGoogle Scholar

  • 33. S.M. Kaczmarek, G. Domianiak-Dzik, W. Ryba-Romanowski, J. Kisielewski, and J. Wojtkowska, “Changes in optical properties of Ce: YAG crystals under annealing and irradiation processing”, Cryst. Res. Technol. 34, 1031-1036 (1999).CrossrefGoogle Scholar

  • 34. H.M. Lee, C.C. Cheng, and C.Y. Huang, “The synthesis and optical property of solid-state prepared YAG:Ce phosphor by a spray-drying method”, Mat.Res.Bull. 44, 1081-1086 (2009) doi:10.1016/j.materresbull.2008.10.006.CrossrefGoogle Scholar

  • 35. A. Lakshmanan, R.S. Kumar, V. Sivakumar, P.C. Thomas, and M.T. Jose, “Synthesis, photoluminescence and thermal quenching of YAG:Ce phosphor for white light emitting diodes”, Indian J. Pure Ap. Phy. 49, 303-307 (2011).Google Scholar

  • 36. T. Kim and J.K. Lee, “Template-free Synthesis and characterization of spherical Y3Al5O12:Ce3+(YAG:Ce) nanoparticles”, Bull. Korean Chem. Soc. 35, 2917-2921 (2014) http://dx.doi.org/10.5012/bkcs.2014.35.10.2917 CrossrefGoogle Scholar

  • 37. P.C. Lin, C.H. Huangb, and W.R. Liu, “An efficient nitridation approach to enhance luminescent intensity of YAG : Ce3+ phosphor by using hexamethylenetetramine”, J.Ceram. Process. Res. 15, 185-188 (2014).Google Scholar

  • 38. C.Q. Li, H.B. Zuo, M. F. Zhang, J.C. Han, and S.H. Meng, “Fabrication of transparent YAG ceramics by traditional solid-state-reaction method”, Trans. Nonferrous Met. Soc. China 17, 148-153 (2007).Google Scholar

  • 39. M. Zeng, Y. Ma, Y. Wang, and C. Pei, “The effect of precipitant on co-precipitation synthesis of yttrium aluminum gar- net powders”, Ceram. Int. 38, 6951-6956 (2012) http://dx.doi.org/10.1016/j.ceramint.2012.05.066. CrossrefGoogle Scholar

  • 40. Y.T. Niena, Y.L. Chena, I.G. Chena, C.S. Hwanga, Y.K. Sub, S.J. Changb, and F.S. Juang, “Synthesis of nano-scaled yttrium aluminum garnet phosphor by co-precipitation method with HMDS treatmen”, Mat. Chem. Phys. 93, 79-83 (2005) doi:10.1016/j.matchemphys.2005.02.017CrossrefGoogle Scholar

  • 41. S. Nishiura, S. Tanabe , K. Fujioka, and Y. Fujimoto, “Properties of transparent Ce:YAG ceramic phosphors for white LED”, Opt. Mater. 33, 688-691 (2011) doi:10.1016/j.opt.mat.2010.06.005CrossrefGoogle Scholar

  • 42. R. Hana, D. Gaob, and K. Chen, “Y3Al5O12 nanocrystallites prepared from a novel crystalline precursor”, Adv Mat Res 306-307, 1142-1147 (2011).Google Scholar

  • 43. A. Potdevin, N. Pradal, M.L. François, G. Chadeyron, D. Boyer, and R. Mahiou, “Microwave-induced combustion synthesis of luminescent aluminate powders”, (cap 9), pp. 189-212, Sintering - Methods and Products, Dr. Volodymyr Shatokha (Ed.), ISBN: 978-953-51-0371-4, InTech, 2012 http://www.intechopen.com/books/sintering-methods-and-products/microwave-induced-combustion-synthesis-of-luminescent-aluminate-powders Google Scholar

  • 44. Y. Lv, W. Zhang, H. Liu, Y. Sang, H. Qin, J. Tan, and L. Tong, “Synthesis of nano-sized and highly sinterable Nd: YAG powders by the urea homogeneous precipitation method”, Powder Techn. 217, 140-147 (2012) doi:10.1016/j. powtec. 2011.10.020CrossrefGoogle Scholar

  • 45. E. Garskaite, D. Jasaitis, and A. Kareiva, “Sol-gel preparation and electrical behaviour of Ln:YAG (Ln=Ce,Nd,Ho, Er)”, J. Serb. Chem. Soc. 68, 8-9, 677-684 (2003).Google Scholar

  • 46. D. Jia, “Nanophosphors for white light LEDS”, Chem. Eng. Commun. 194, 1666-1687 (2007) doi: 10.1080/00986440701446359.CrossrefGoogle Scholar

  • 47. C.J. Liu, R.M. Yu, Z.W. Xu, J. Cai, X.H. Yan, and X.T. Luo, “Crystallization, morphology and luminescent properties of YAG:Ce3+ phosphor powder prepared by polyacrylamide gel method”, Trans. Nonferrous Met. Soc. China 17, 1093-1099 (2007).Google Scholar

  • 48. X.H. Yan , S.S. Zheng, R.M Yu, J. Cai, Z.W. Xu, C.J. Liu, and X.T. Luo, “Preparation of YAG:Ce3+ phosphor by sol-gel low temperature combustion method and its luminescent properties”, Trans. Nonferrous Met. Soc. China 18, 648-653 (2008).Google Scholar

  • 49. P.A. Tanner, L. Fu, L. Ning, B.M. Cheng, and M.G. Brik, “Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels”, J. Phys.: Condens. Matter 19, 216213-216227 (2007) doi:10.1088/ 0953-8984/19/21/216213CrossrefGoogle Scholar

  • 50. N. Kaithwas, M. Dave, S. Karb, and K.S. Bartwal, “Structural features of Ce doped YAG nanoparticles synthesized by modified sol-gel method”, Physica E 44, 1486-1489 (2012) http://dx.doi.org/10.1016/j.physe.2012.03.015. CrossrefGoogle Scholar

  • 51. H. Sun, X. Zhang, and Z. Bai, “Synthesis and characterization of nano-sized YAG:Ce,Sm spherical phosphors”, J. Rare Earths, 31, 3, 231-234 (2013 ).Google Scholar

  • 52. E.M. Loiko, L. Lipinska, J.Cz. Dobrowolski, and A. Rzepka, “Studies on sol-gel processes accompanying formation of the yttrium aluminum garnet nanocrystals”, Materiały Elektroniczne T. 34, 3/4 (2006) http://rcin.org.plGoogle Scholar

  • 53. V. Schiopu, A. Matei, A. Dinescu, M. Danila, and I. Cernica, “Ce, Gd codoped YAG nanopowder for white light emitting device”, J. Nanosci. Nanotechnol. 12, 8836-8840 (2012).Google Scholar

  • 54. A. Lukowiak, R.J. Wiglusz, M. Maczka, P. Gluchowski, and W. Strek, “IR and Raman spectroscopy study of YAG nano-ceramics”, Chem. Phys. Lett. 494, 279-283 (2010) doi:10. 1016/j.cplett.2010.06.033.CrossrefGoogle Scholar

  • 55. A. Sahraneshin, S. Takami, K. Minami, D. Hojo, T. Arita, and T. Adschiri, “Synthesis and morphology control of surface functionalized nanoscale yttrium aluminum garnet particles via supercritical hydrothermal method”, Prog. Cryst. Growth. Ch. Mat. 58, 43-50 (2012) doi:10.1016/j. pcrysgrow.2011.10.004.CrossrefGoogle Scholar

  • 56. M. Zarzecka-Napierala and K. Haberko, “Synthesis and characterization of yttrium aluminium garnet (YAG) powders” Process. Appl. Ceram. 1, 69-74 (2007).CrossrefGoogle Scholar

  • 57. G. Xia, S. Zhou, J. Zhang, and J. Xu, “Structural and optical properties of YAG:Ce3+ phosphors by sol-gel combustion method”, J.Cryst. Growth 279, 357-362 (2005) doi:10. 1016/j.jcrysgro.2005.01.072.CrossrefGoogle Scholar

  • 58. M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer, and V. Huch, “Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods”, J. Mater. Chem. 9, 3069-3079 (1999). Google Scholar

  • 59. R. Choudhary, K. Laishram, and R.K. Gupta, “Rapid synthesis of Nd:YAG nanopowder by microwave flash combus- tion”, Mat. Sci.-Poland 27, 1025-1031 (2009).Google Scholar

  • 60. J.A. Jeong, K. Park, D.H. Lee, H.G. Kim, and Y.Y. Kim, “The Characteristics of YAG:Ce phosphor powder prepared using a NO3Malonic Acid-NH4NO3-NH3·H2O system”, Bull. Korean Chem. Soc. 33, 1141-1146 (2012) http://dx.doi.org/10.5012/bkcs.2012.33.4.1141. CrossrefGoogle Scholar

  • 61. G. He, G. Liu, S. Guo, Z. Yang, and J. Li, “Crystallization of Y3Al5O12:Ce3+ glass microspheres prepared by flame-spraying synthesis”, J Mater Sci: Mater Electron 26, 72-76 (2015) DOI 10.1007/s10854-014-2365-5.CrossrefGoogle Scholar

  • 62. K. Zhang, W. Hu, Y. Wu, and H. Liu, “Influence of processing techniques on the properties of YAG:Ce nanophosphor”, Ceram. Int. 35, 719-723 (2009).Google Scholar

  • 63. H.M.H. Fadlalla and C.C. Tang, “YAG:Ce3+ nano-sized particles prepared by precipitation technique”, Mat. Chem. Phys. 114, 99-102 (2009).Google Scholar

  • 64. Y.S. Cho, Y.D. Huh, C.R. Park, and Y.R. Do, “Preparation with laser ablation and photoluminescence of Y3Al5O12:Ce nanophosphors”, Electron. Mater. Lett. 10, 461-465 (2014) DOI: 10.1007/s13391-014-4024-7.CrossrefGoogle Scholar

  • 65. W. Peng, S. Jun, T. Hua, L. Qi-Fei, and W. Da-Jian, “Thermal stability of luminous YAG: Ce bulk ceramic as a remote phosphor prepared through silica-stabilizing valence of activator in air”, Optoel. Lett. 8, 0201-0204 (2012).Google Scholar

  • 66. http://abulafia.mt.ic.ac.uk/shannon/ptable.php. Google Scholar

  • 67. http://www.knowledgedoor.com/. Google Scholar

  • 68. S. Mukherjee, V. Sudarsan, R.K. Vatsa, and A.K. Tyagi, “Luminescence studies on lanthanide ions (Eu3+, Dy3+and Tb3+) doped YAG:Ce nano-phosphors”, J. Lumin. 129, 69-72 (2009) doi:10.1016/j.jlumin.2008.08.003.CrossrefGoogle Scholar

  • 69. F. Huang, L. Dong, Z. Fua, H. Wanga, W. Wanga, and Y. Wang, “Study of co-excited green emission of Tb3+, Ce3+ and Gd3+ in yttrium aluminum garnet”, J. Ceram. Process. Res. 10, 807-811 (2009).Google Scholar

  • 70. B. Huang, Y. Ma, S. Qian, D. Zou, G. Zheng, and Z. Dai, “Luminescent properties of low-temperature-hydrothermal-ly-synthesized and post-treated YAG:Ce (5%) phosphors”, Opt. Mat. 36, 1561-1565 (2014) http://dx.doi.org/10.1016/j.optmat.2014.04.025. Google Scholar

  • 71. L. Mancica, K. Marinkovica, B.A. Marinkovicb, M. Dramicaninc, and O. Milosevica, “YAG:Ce3+ nanostructured particles obtainedvia spray pyrolysis of polymeric precursor solution”, J. Eur. Ceram. Soc. 30, 577-582 (2010) doi:10.1016/ j.jeurceramsoc.2009.05.037CrossrefGoogle Scholar

  • 72. www.jeol.com.Google Scholar

  • 73. L. Seijo, B. Zarandiaran,“4f and 5d levels of Ce3+ in D2 eigh- tfold oxygen coordination”, Opt. Mater. 35, 1932 (2013).Google Scholar

  • 74. K. Li, C and Shen, “White LED based on nano-YAG:Ce3+/ YAG:Ce3+,Gd3+ hybrid phosphors”, Optik 123, 621-623 (2012) doi:10.1016/j.ijleo.2011.06.005.CrossrefGoogle Scholar

  • 75. http://www.phosphor-technology.com/products/crt.htm, PTL Grade: QMK58/N-C1, QMK58/F-C1, MPK58/S-C1, QMPK65/N-C1.Google Scholar

  • 76. http://www.phosphortech.com.Google Scholar

  • 77. J.D. Furman, G. Gundiah, K. Page, N. Pizarro, and A.K. Cheetham, “Local structure and time-resolved photolumi- nescence of emulsion prepared YAG nanoparticles”, Chem. Phys. Lett. 465, 67-72 (2008) doi:10.1016/j.cplett.2008.09.045.CrossrefGoogle Scholar

  • 78. D.N. Chung, D.N. Hieu, T.T. Thao, V.V. Truong, and N.N. Dinh, “Synthesis and characterization of Ce-doped Y3Al5O12 (YAG:Ce) nanopowders used for solid-state lighting”, J. Na- nomat. Hindawi Publishing Corporation, 1-7 (2014) http://dx. doi.org/10.1155/2014/571920.CrossrefGoogle Scholar

  • 79. http://www.osram-os.com.Google Scholar

  • 80. H. Yang, D.K. Lee, and Y.S. Kim, “Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics”, Mat. Chem. Phys. 114, 665-669 (2009) doi:10.1016/j.matchemphys.2008.10.019. CrossrefGoogle Scholar

About the article

Published Online: 2015-10-07

Published in Print: 2015-12-01


Citation Information: Opto-Electronics Review, Volume 23, Issue 4, Pages 239–251, ISSN (Online) 1896-3757, ISSN (Print) 1230-3402, DOI: https://doi.org/10.1515/oere-2015-0038.

Export Citation

© 2015.Get Permission

Comments (0)

Please log in or register to comment.
Log in