1
K. Jędrzejewski, “Biconical fused taper – a universal fiber devices technology”, Opto-Electr. Rev. 8, 153–159 (2000). Google Scholar
2
K. Stasiewicz and L.R. Jaroszewicz, “Automatic set-up for advanced optical fiber elements manufacturing”, Proc. SPIE 5952, 233–239 (2005).Google Scholar
3
T.A. Birks and Y.W. Li, “The shape of fibre tapers”, J. Lightwave Technol. 10, 432–438 (1992).Google Scholar
4
M. Ahmad and L.L. Hench, “Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers”, Biosen. Bioelectron. 20, 1312–1319 (2005). Google Scholar
5
A Kieżun, L.R. Jaroszewicz, and A. Świłło, “In-line fiber-optic biconical polarizer”, Opt. Appl. 29, 163–169 (1999). Google Scholar
6
C.M. McAtamney, et.al “Reproducible methods for fabrication fused biconical taper couplers using a CO2 laser based process”, Proc. 3rd Int. WLT-Conference on laser, 1–5 (2005). Google Scholar
7
G. Humbert, W.J. Wadsworth, S.G. Leon-Saval, J.C. Knight, T.A. Birks, and P.St.J, Russel, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibres”, Opt. Express 14, 1596–1602 (2006). Google Scholar
8
L. Zhang, J. Lou, and L. Tong, “Micro/nanofiber optical sensors”, Photonic Sensor 1, 31–42 (2011). Google Scholar
9
S. Zhu, F. Pang, and T. Wang, “Single-mode tapered optical fibre for temperature sensor based on multimode interference”, Opt. Sensor Biophotonics 8311, 1–6 (2011). Google Scholar
10
K.A. Stasiewicz, R. Krajewski, L.R. Jaroszewicz, M. Kuja-wińska, and R. Świłło, “Influence of tapering process on changes of optical fibre refractive index distribution along a structure”, Opt. Electron. Rev 10, 102–109 (2010). Google Scholar
11
R.K. Verma, A.K. Sharma, and B.D. Gupta, “Surface plas-mon resonance based tapered fiber optic sensor with different taper profiles”, Opt. Commun. 281, 1486–1491 (2008). Google Scholar
12
S. Kumar, G. Sharma, and V. Singh, “Sensitivity of tapered optical fiber surface plasmon resonance sensors”, Opt. Fiber Technol. 20, 333–335 (2014). Google Scholar
13
B.D. Gupta and R.K. Verma, “Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications”, J. Sensors, Article ID 979761, 1–12 (2009). Google Scholar
14
A. González-Cano, M.-C. Navarrete, Ó. Esteban, and N. Díaz-Herrera, “Plasmonic sensors based on doubly-deposited tapered optical fibers”, Sensors 14, 4791–4805 (2014).Web of ScienceGoogle Scholar
15
R. Jha, R.K. Verma, and B.D. Gupta, “Surface plasmon resonance-based tapered fiber optic sensor: sensitivity enhancement by introducing a teflon layer between core and metal layer”, Plasmonics 3, 151–156 (2008). Google Scholar
16
A.K. Sharma, R. Jha, and B.D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review”, IEEE Sensors J. 7, 1118–1129 (2007). Google Scholar
17
M. Sumetsky, Y. Dulashko, J.M. Fini, A. Hale, and D.J. DiGiovanni, “The microfiber loop resonator: theory,experi-ment, and application”, J. Lightwave Technol. 24, 242–250 (2006). Google Scholar
18
T.E. Dimmick, G. Kakarantzas, T. Birks, and P.S.J. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers”, App. Opt. 38, 6845–6848 (1999). Google Scholar
19
K. Sony and M. Soumya, “Preparation of tapered optical fibers to utilize the evanescent field for sensing applications”, Int. J. Engin. Trends and Technology 4, 442–446, (2011). Google Scholar
20
H.J. Kbashi, “Fabrication of submicron-diameter and taper fibers using chemical etching”, J. Mater. Sci. Technol. 28, 308–312 (2012). Google Scholar
21
T.A. Birks and Y.W. Li, “The shape of fibre tapers”, J. Lightwave Technol. 10, 432–438 (1992). Google Scholar
22
I. Kaminow, “Optical fibre telecommunication”, Academic Press (2008). Google Scholar
23
Y. Tian, W. Wang, N. Wu, X. Zou, and X. Wang, “Tapered optical fibre sensor for label-free detection of biomolecules”, Sensors 11, 37810–3790 (2011). Google Scholar
24
A. Leung, P.M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors”, Sensors and Actuators B 125, 688–703 (2007). Google Scholar
25
L. Tong and M. Sumesky, “Subwavelength and nanometer diameter optical fibres”, Springer, 1–22, 2011. Google Scholar
26
O. Katsunari, “Wave theory of optical waveguides, in fundamentals of optical waveguides”, Academic Press, London (2006). Google Scholar
27
T.F. Morse and A.X. Mendez, “Specialty Optical Fibers Handbook”, Academic Press is an imprint of Elsevier, 19–45 (2007). Google Scholar
28
J. Siuzdak, “Wstęp do wspÓłczesnej telekomunikacji Światło-wodowej”, Wydawnictwa Komunikacji i łącznoŚci, 52–71 (1999). (IN POLISH) Google Scholar
29
T.A. Birks, W.J. Wadsworth, and P.St.J. Russell, “Superconti-nuum generation in tapered fibers”, Opt. Lett. 19, 1415–1417 (2000). Google Scholar
30
G. Brambilla, “Optical fibre nanowires and microwires: a review”, J. Opt. 12 043001 (2010) Web of ScienceGoogle Scholar
31
A.K. Sharma R. Jha, and B.D. Gupta, “Fiber-optic sensor based on surface plasmon resonance: a comprehensive review”, IEEE J. Sensors 7, 1118–1128 (2007). Google Scholar
32
R.H. Kooymann, “Physics of Surface Plasmon, Handbook of Surface Plasmon Resonance”, RSC Publishing, 15–25 (2008). Google Scholar
33
P.B. Johnson and R.W. Christy, “Optical constants of the noble metals”, Phys. Rev. B 6, 4370–4379 (1972). Google Scholar
34
A.D. Rakić, A.B. Djurišic, J.M. Elazar, and M.L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices”, Appl. Opt. 37, 5271–5283 (1998). Google Scholar
35
P.B. Johnson and R.W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd”, Phys. Rev. B 9, 5056–5070 (1974). Google Scholar
36
http://www.corning.com/WorkArea/showcontent.aspx?id= 63939 17. 04.2015r, Google Scholar
37
Z. Hołdyński M. Napierala, M. Szymański, M. Murawski, P. Mergo, P. Marć, L.R .Jaroszewicz, and T. Nasiłowski, “Experimental study of dispersion characteristics for a series of microstructured fibers for customized supercontinuum generation”, Opt. Express, 21 7107–7117 (2013). Google Scholar
Comments (0)